{"title":"干扰抑制方法对闪烁检测的影响","authors":"Wenjian Qin, F. Dovis","doi":"10.1109/NAVITEC.2018.8642644","DOIUrl":null,"url":null,"abstract":"The use of Global Navigation Satellite Systems (GNSS) signals as signal of opportunity for ionospheric sounding is becoming quite popular. In particular, for scintillation monitoring, it is essential that the affected GNSS signal is not distorted by any other artificial interference. As a matter of fact, the Ionospheric Scintillation Monitoring Receivers (ISMR) used to observe scintillation activities could operate in scenarios where communication systems or even jammers are present. Such sources can provide scintillation-like performance in the signal processing stage, leading to misconceptions about the behavior of actual scintillation phenomena. This paper investigates the estimation of the S4 index, generally used to detect the presence of a scintillation event, under five types of anthropogenic interference, including continuous wave, narrow band, wide band, chirp and pulsed interference. Furthermore, the study also addresses the use of notch filtering and wavelet packet decomposition to mitigate the anthropogenic interference from a scenario in which both scintillation and artificial interference are present, and the S4 is estimated on the mitigated data.","PeriodicalId":355786,"journal":{"name":"2018 9th ESA Workshop on Satellite NavigationTechnologies and European Workshop on GNSS Signals and Signal Processing (NAVITEC)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Effects of Interference Mitigation Methods on Scintillation Detection\",\"authors\":\"Wenjian Qin, F. Dovis\",\"doi\":\"10.1109/NAVITEC.2018.8642644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of Global Navigation Satellite Systems (GNSS) signals as signal of opportunity for ionospheric sounding is becoming quite popular. In particular, for scintillation monitoring, it is essential that the affected GNSS signal is not distorted by any other artificial interference. As a matter of fact, the Ionospheric Scintillation Monitoring Receivers (ISMR) used to observe scintillation activities could operate in scenarios where communication systems or even jammers are present. Such sources can provide scintillation-like performance in the signal processing stage, leading to misconceptions about the behavior of actual scintillation phenomena. This paper investigates the estimation of the S4 index, generally used to detect the presence of a scintillation event, under five types of anthropogenic interference, including continuous wave, narrow band, wide band, chirp and pulsed interference. Furthermore, the study also addresses the use of notch filtering and wavelet packet decomposition to mitigate the anthropogenic interference from a scenario in which both scintillation and artificial interference are present, and the S4 is estimated on the mitigated data.\",\"PeriodicalId\":355786,\"journal\":{\"name\":\"2018 9th ESA Workshop on Satellite NavigationTechnologies and European Workshop on GNSS Signals and Signal Processing (NAVITEC)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 9th ESA Workshop on Satellite NavigationTechnologies and European Workshop on GNSS Signals and Signal Processing (NAVITEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAVITEC.2018.8642644\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 9th ESA Workshop on Satellite NavigationTechnologies and European Workshop on GNSS Signals and Signal Processing (NAVITEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAVITEC.2018.8642644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

使用全球导航卫星系统(GNSS)信号作为电离层探测的机会信号正变得相当流行。特别是,对于闪烁监测,至关重要的是受影响的GNSS信号不受任何其他人为干扰的扭曲。事实上,用于观测闪烁活动的电离层闪烁监测接收机(ISMR)可以在存在通信系统甚至干扰机的情况下运行。这样的源可以在信号处理阶段提供类似闪烁的性能,导致对实际闪烁现象的行为的误解。本文研究了在连续波、窄带、宽带、啁啾和脉冲五种人为干扰下,通常用于探测闪烁事件存在的S4指数的估计。此外,该研究还讨论了使用陷波滤波和小波包分解来减轻闪烁和人工干扰同时存在的情况下的人为干扰,并根据减轻的数据估计了S4。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of Interference Mitigation Methods on Scintillation Detection
The use of Global Navigation Satellite Systems (GNSS) signals as signal of opportunity for ionospheric sounding is becoming quite popular. In particular, for scintillation monitoring, it is essential that the affected GNSS signal is not distorted by any other artificial interference. As a matter of fact, the Ionospheric Scintillation Monitoring Receivers (ISMR) used to observe scintillation activities could operate in scenarios where communication systems or even jammers are present. Such sources can provide scintillation-like performance in the signal processing stage, leading to misconceptions about the behavior of actual scintillation phenomena. This paper investigates the estimation of the S4 index, generally used to detect the presence of a scintillation event, under five types of anthropogenic interference, including continuous wave, narrow band, wide band, chirp and pulsed interference. Furthermore, the study also addresses the use of notch filtering and wavelet packet decomposition to mitigate the anthropogenic interference from a scenario in which both scintillation and artificial interference are present, and the S4 is estimated on the mitigated data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
State-space Estimation of Ionospheric Scintillation Processes with a Static GNSS Receiver On the Use of CSK for GNSS Anti-Spoofing Impact of Issue of Data Update Periods on Satellite-Based Augmentation Systems Ultra-Sparse Binary LDPC Codes with CSK Signals for Increased Data Rates in Future GNSS The GNSS Laboratory Tool Suite (gLAB) updates: SBAS, DGNSS and Global Monitoring System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1