J. Frydel, D. Pienkowski, J. Dobrowolski, G. Buntkowsky
{"title":"固体核磁共振技术中五端口传输线倍频器散射矩阵参数的理论模拟与实验比较","authors":"J. Frydel, D. Pienkowski, J. Dobrowolski, G. Buntkowsky","doi":"10.1109/MIKON.2006.4345192","DOIUrl":null,"url":null,"abstract":"Radio frequency (abbr.: RF) techniques constitute a very useful tool in studies on biologic and chemical systems, therefore it is employed in Nuclear Magnetic Resonance (abbr.: NMR) techniques. In order to make use of it, there is a need of designing and modelling of NMR probes. These NMR probes exemplify single-or multi-port radio frequency multiplexers. The NMR probe undergoing analysis is comprised of an impedance tuned and matched coaxial transmission line network terminated with a single sample coil, and multiple RF input-output connections adapted to 50 Ohm standard by means of tuning and matching capacitors. The comparison of scattering matrix elements S(i,i) (reflection coefficients) of both theoretically simulated and constructed a five channel transmission line frequency multiplexer probe of J.Schaefer & R.McKay type is presented. The S-matrix transmission coefficients: S(i,j), ine j, are presented for a \"real\" multiplexer only, due to the importance of the real NMR probe performance. So called calibration spectra obtained with the multiplexer probe are shown as well.","PeriodicalId":315003,"journal":{"name":"2006 International Conference on Microwaves, Radar & Wireless Communications","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of Theoretically Simulated and Experimental Scattering Matrix Parameters in a Five Port Transmission Line Frequency Multiplexer for Solid State Nuclear Magnetic Resonance Techniques\",\"authors\":\"J. Frydel, D. Pienkowski, J. Dobrowolski, G. Buntkowsky\",\"doi\":\"10.1109/MIKON.2006.4345192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Radio frequency (abbr.: RF) techniques constitute a very useful tool in studies on biologic and chemical systems, therefore it is employed in Nuclear Magnetic Resonance (abbr.: NMR) techniques. In order to make use of it, there is a need of designing and modelling of NMR probes. These NMR probes exemplify single-or multi-port radio frequency multiplexers. The NMR probe undergoing analysis is comprised of an impedance tuned and matched coaxial transmission line network terminated with a single sample coil, and multiple RF input-output connections adapted to 50 Ohm standard by means of tuning and matching capacitors. The comparison of scattering matrix elements S(i,i) (reflection coefficients) of both theoretically simulated and constructed a five channel transmission line frequency multiplexer probe of J.Schaefer & R.McKay type is presented. The S-matrix transmission coefficients: S(i,j), ine j, are presented for a \\\"real\\\" multiplexer only, due to the importance of the real NMR probe performance. So called calibration spectra obtained with the multiplexer probe are shown as well.\",\"PeriodicalId\":315003,\"journal\":{\"name\":\"2006 International Conference on Microwaves, Radar & Wireless Communications\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 International Conference on Microwaves, Radar & Wireless Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MIKON.2006.4345192\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Conference on Microwaves, Radar & Wireless Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MIKON.2006.4345192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparison of Theoretically Simulated and Experimental Scattering Matrix Parameters in a Five Port Transmission Line Frequency Multiplexer for Solid State Nuclear Magnetic Resonance Techniques
Radio frequency (abbr.: RF) techniques constitute a very useful tool in studies on biologic and chemical systems, therefore it is employed in Nuclear Magnetic Resonance (abbr.: NMR) techniques. In order to make use of it, there is a need of designing and modelling of NMR probes. These NMR probes exemplify single-or multi-port radio frequency multiplexers. The NMR probe undergoing analysis is comprised of an impedance tuned and matched coaxial transmission line network terminated with a single sample coil, and multiple RF input-output connections adapted to 50 Ohm standard by means of tuning and matching capacitors. The comparison of scattering matrix elements S(i,i) (reflection coefficients) of both theoretically simulated and constructed a five channel transmission line frequency multiplexer probe of J.Schaefer & R.McKay type is presented. The S-matrix transmission coefficients: S(i,j), ine j, are presented for a "real" multiplexer only, due to the importance of the real NMR probe performance. So called calibration spectra obtained with the multiplexer probe are shown as well.