M. Bescond, M. Lannoo, L. Raymond, F. Michelini, M. Pala
{"title":"离子杂质对硅纳米线MOS晶体管的影响","authors":"M. Bescond, M. Lannoo, L. Raymond, F. Michelini, M. Pala","doi":"10.1109/IWCE.2009.5091116","DOIUrl":null,"url":null,"abstract":"This study presents ionized impurity impacts on silicon nanowire MOS transistors. We first calculate the current characteristics with a self-consistent three-dimensional (3D) Green's function approach and show the effects of both acceptor and donor impurities on the physical electron properties. In particular, we emphasize that the presence of a donor induces different transport phenomena according to the applied gate bias. Considering an attractive Coulomb potential, we then evaluate the effective mass validity by comparing the localized states of cubic dots with those obtained through a sp 3 third-neighbor tight-binding model. Our results show that in first approximation, the effective mass is still adapted to treat ionized impurities.","PeriodicalId":443119,"journal":{"name":"2009 13th International Workshop on Computational Electronics","volume":"06 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Influence of Ionized Impurities in Silicon Nanowire MOS Transistors\",\"authors\":\"M. Bescond, M. Lannoo, L. Raymond, F. Michelini, M. Pala\",\"doi\":\"10.1109/IWCE.2009.5091116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents ionized impurity impacts on silicon nanowire MOS transistors. We first calculate the current characteristics with a self-consistent three-dimensional (3D) Green's function approach and show the effects of both acceptor and donor impurities on the physical electron properties. In particular, we emphasize that the presence of a donor induces different transport phenomena according to the applied gate bias. Considering an attractive Coulomb potential, we then evaluate the effective mass validity by comparing the localized states of cubic dots with those obtained through a sp 3 third-neighbor tight-binding model. Our results show that in first approximation, the effective mass is still adapted to treat ionized impurities.\",\"PeriodicalId\":443119,\"journal\":{\"name\":\"2009 13th International Workshop on Computational Electronics\",\"volume\":\"06 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 13th International Workshop on Computational Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWCE.2009.5091116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 13th International Workshop on Computational Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCE.2009.5091116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Influence of Ionized Impurities in Silicon Nanowire MOS Transistors
This study presents ionized impurity impacts on silicon nanowire MOS transistors. We first calculate the current characteristics with a self-consistent three-dimensional (3D) Green's function approach and show the effects of both acceptor and donor impurities on the physical electron properties. In particular, we emphasize that the presence of a donor induces different transport phenomena according to the applied gate bias. Considering an attractive Coulomb potential, we then evaluate the effective mass validity by comparing the localized states of cubic dots with those obtained through a sp 3 third-neighbor tight-binding model. Our results show that in first approximation, the effective mass is still adapted to treat ionized impurities.