{"title":"类网络系统中分布的不确定性的量化","authors":"Zihan Wang, Hongyi Xu","doi":"10.1115/detc2020-22082","DOIUrl":null,"url":null,"abstract":"\n Network-like engineering systems, such as transport networks and lattice metamaterials, are featured by high dimensional, complex topological characteristics, which pose a great challenge for uncertainty quantification (UQ). Existing UQ approaches are only applicable to parametric uncertainties, or high dimensional random quantities distributed in a simply connected space (e.g., line section, rectangular area, etc.). The topological characteristics of the input space cannot be captured by existing UQ models. To resolve this issue, a network-based Gaussian random process UQ approach is proposed in this work. By representing the topological input space as a node-edge network, network distance is employed to replace the Euclidean distance in characterizing the spatial correlations. Furthermore, a conditional simulation-based approach is proposed for sampling. Realizations of random quantities on each edge of the network is sampled conditionally on the node values, which are modeled by a multivariable Gaussian distribution. The effectiveness of the proposed approach is demonstrated with two engineering case studies: stochastic thermal conduction analysis of a 3D lattice structure, and characterization of the distortion pattern of an additively manufactured cellular structure.","PeriodicalId":415040,"journal":{"name":"Volume 11A: 46th Design Automation Conference (DAC)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantification of Uncertainties Distributed in Network-Like Systems\",\"authors\":\"Zihan Wang, Hongyi Xu\",\"doi\":\"10.1115/detc2020-22082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Network-like engineering systems, such as transport networks and lattice metamaterials, are featured by high dimensional, complex topological characteristics, which pose a great challenge for uncertainty quantification (UQ). Existing UQ approaches are only applicable to parametric uncertainties, or high dimensional random quantities distributed in a simply connected space (e.g., line section, rectangular area, etc.). The topological characteristics of the input space cannot be captured by existing UQ models. To resolve this issue, a network-based Gaussian random process UQ approach is proposed in this work. By representing the topological input space as a node-edge network, network distance is employed to replace the Euclidean distance in characterizing the spatial correlations. Furthermore, a conditional simulation-based approach is proposed for sampling. Realizations of random quantities on each edge of the network is sampled conditionally on the node values, which are modeled by a multivariable Gaussian distribution. The effectiveness of the proposed approach is demonstrated with two engineering case studies: stochastic thermal conduction analysis of a 3D lattice structure, and characterization of the distortion pattern of an additively manufactured cellular structure.\",\"PeriodicalId\":415040,\"journal\":{\"name\":\"Volume 11A: 46th Design Automation Conference (DAC)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 11A: 46th Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2020-22082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 11A: 46th Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2020-22082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Quantification of Uncertainties Distributed in Network-Like Systems
Network-like engineering systems, such as transport networks and lattice metamaterials, are featured by high dimensional, complex topological characteristics, which pose a great challenge for uncertainty quantification (UQ). Existing UQ approaches are only applicable to parametric uncertainties, or high dimensional random quantities distributed in a simply connected space (e.g., line section, rectangular area, etc.). The topological characteristics of the input space cannot be captured by existing UQ models. To resolve this issue, a network-based Gaussian random process UQ approach is proposed in this work. By representing the topological input space as a node-edge network, network distance is employed to replace the Euclidean distance in characterizing the spatial correlations. Furthermore, a conditional simulation-based approach is proposed for sampling. Realizations of random quantities on each edge of the network is sampled conditionally on the node values, which are modeled by a multivariable Gaussian distribution. The effectiveness of the proposed approach is demonstrated with two engineering case studies: stochastic thermal conduction analysis of a 3D lattice structure, and characterization of the distortion pattern of an additively manufactured cellular structure.