D. P. Kwok, Z. Deng, C. K. Li, T. Leung, Zeng-qi Sun, J. Wong
{"title":"基于q -学习策略的未知动态系统模糊神经控制","authors":"D. P. Kwok, Z. Deng, C. K. Li, T. Leung, Zeng-qi Sun, J. Wong","doi":"10.1109/FUZZ.2003.1209411","DOIUrl":null,"url":null,"abstract":"In this paper an efficient Q-learning paradigm implemented on a fuzzy CMAC network is proposed. The fuzzy CMAC network topological architecture is described. The continuous states of the system are partitioned into a number of fuzzy boxes. With the proposed fuzzy CMAC the Q-values of agents in the fired fuzzy boxes are evaluated and the control actions with maximum Q-values can be derived. The proposed hybrid adaptive and learning type of Fuzzy Neural control system based on the Q-learning is applied to the control of a pH-neutralization process.","PeriodicalId":212172,"journal":{"name":"The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ '03.","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Fuzzy neural control of systems with unknown dynamic using Q-learning strategies\",\"authors\":\"D. P. Kwok, Z. Deng, C. K. Li, T. Leung, Zeng-qi Sun, J. Wong\",\"doi\":\"10.1109/FUZZ.2003.1209411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper an efficient Q-learning paradigm implemented on a fuzzy CMAC network is proposed. The fuzzy CMAC network topological architecture is described. The continuous states of the system are partitioned into a number of fuzzy boxes. With the proposed fuzzy CMAC the Q-values of agents in the fired fuzzy boxes are evaluated and the control actions with maximum Q-values can be derived. The proposed hybrid adaptive and learning type of Fuzzy Neural control system based on the Q-learning is applied to the control of a pH-neutralization process.\",\"PeriodicalId\":212172,\"journal\":{\"name\":\"The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ '03.\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ '03.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZ.2003.1209411\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ '03.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ.2003.1209411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fuzzy neural control of systems with unknown dynamic using Q-learning strategies
In this paper an efficient Q-learning paradigm implemented on a fuzzy CMAC network is proposed. The fuzzy CMAC network topological architecture is described. The continuous states of the system are partitioned into a number of fuzzy boxes. With the proposed fuzzy CMAC the Q-values of agents in the fired fuzzy boxes are evaluated and the control actions with maximum Q-values can be derived. The proposed hybrid adaptive and learning type of Fuzzy Neural control system based on the Q-learning is applied to the control of a pH-neutralization process.