基于自举平均的词簇构建朴素贝叶斯文档分类器

Yuanzhe Wang, Qiang Zhang, Liyuan Bai
{"title":"基于自举平均的词簇构建朴素贝叶斯文档分类器","authors":"Yuanzhe Wang, Qiang Zhang, Liyuan Bai","doi":"10.1109/ITIME.2009.5236431","DOIUrl":null,"url":null,"abstract":"Aimed to solve the problem of low classification accuracy caused by poor distribution estimation by training naive bayes document classfier on word clusters, we build a sequential word list based on mutual information between words and their semantic cluster labels, then construct a sample set of the same size with the word list through bootstrap sampling and use the average of the corresponding parameters estimated from the sample set as the last parameter to classify unknown documents. Experiment results on benchmark document data sets show that the proposed strategy gains higher classification accuracy comparing to naive bayes documents classifier on word clusters or on words.","PeriodicalId":398477,"journal":{"name":"2009 IEEE International Symposium on IT in Medicine & Education","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Building naive bayes document classifier using word clusters based on bootstrap averaging\",\"authors\":\"Yuanzhe Wang, Qiang Zhang, Liyuan Bai\",\"doi\":\"10.1109/ITIME.2009.5236431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aimed to solve the problem of low classification accuracy caused by poor distribution estimation by training naive bayes document classfier on word clusters, we build a sequential word list based on mutual information between words and their semantic cluster labels, then construct a sample set of the same size with the word list through bootstrap sampling and use the average of the corresponding parameters estimated from the sample set as the last parameter to classify unknown documents. Experiment results on benchmark document data sets show that the proposed strategy gains higher classification accuracy comparing to naive bayes documents classifier on word clusters or on words.\",\"PeriodicalId\":398477,\"journal\":{\"name\":\"2009 IEEE International Symposium on IT in Medicine & Education\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Symposium on IT in Medicine & Education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITIME.2009.5236431\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Symposium on IT in Medicine & Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITIME.2009.5236431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对在聚类上训练朴素贝叶斯文档分类器由于分布估计差而导致分类准确率低的问题,我们基于词及其语义聚类标签之间的互信息构建顺序词列表,然后通过自举抽样构造与词列表大小相同的样本集,并将样本集估计出的相应参数的平均值作为最后一个参数对未知文档进行分类。在基准文档数据集上的实验结果表明,与朴素贝叶斯文档分类器相比,该策略在词簇和词上的分类准确率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Building naive bayes document classifier using word clusters based on bootstrap averaging
Aimed to solve the problem of low classification accuracy caused by poor distribution estimation by training naive bayes document classfier on word clusters, we build a sequential word list based on mutual information between words and their semantic cluster labels, then construct a sample set of the same size with the word list through bootstrap sampling and use the average of the corresponding parameters estimated from the sample set as the last parameter to classify unknown documents. Experiment results on benchmark document data sets show that the proposed strategy gains higher classification accuracy comparing to naive bayes documents classifier on word clusters or on words.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The design and implementation of campus network-based experimental materials management system Construction of engineering training center and the cultivation of talents for petroleum machinery Research and implementation of Course Teaching-Learning Process Management System The detecting technology for the transient feeble optical detection system Survey on demand for accounting talents and evaluation of professional competence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1