迈向使用深度对抗学习的类人聊天机器人

Quoc-Dai Luong Tran, Anh-Cuong Le, V. Huynh
{"title":"迈向使用深度对抗学习的类人聊天机器人","authors":"Quoc-Dai Luong Tran, Anh-Cuong Le, V. Huynh","doi":"10.1109/KSE56063.2022.9953771","DOIUrl":null,"url":null,"abstract":"Conversational agents are getting more popular and applied in a wide range of practical application areas. The main task of these agents is not only to generate context-appropriate responses to a given query but also to make the conversation human-like. Thanks to the ability of deep learning based models in natural language modeling, recent studies have made progress in designing conversational agents that can provide more semantically accurate responses. However, the naturalness in such conversation setting has not been given adequate attention in these studies. This paper aims to incorporate both important criteria of accuracy and naturalness of conversation in developing a new model for conversational agents. To this end, inspired by the idea of Turing test and the idea of adversarial learning strategy, we propose to design a model based on generative deep neural networks that interestingly allow to generate accurate responses optimized by the mechanics of imitating human-generated conversations. Experimental results demonstrate that the proposed models produce more natural and accurate responses, yielding significant gains in BLEU scores.","PeriodicalId":330865,"journal":{"name":"2022 14th International Conference on Knowledge and Systems Engineering (KSE)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Towards a Human-like Chatbot using Deep Adversarial Learning\",\"authors\":\"Quoc-Dai Luong Tran, Anh-Cuong Le, V. Huynh\",\"doi\":\"10.1109/KSE56063.2022.9953771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conversational agents are getting more popular and applied in a wide range of practical application areas. The main task of these agents is not only to generate context-appropriate responses to a given query but also to make the conversation human-like. Thanks to the ability of deep learning based models in natural language modeling, recent studies have made progress in designing conversational agents that can provide more semantically accurate responses. However, the naturalness in such conversation setting has not been given adequate attention in these studies. This paper aims to incorporate both important criteria of accuracy and naturalness of conversation in developing a new model for conversational agents. To this end, inspired by the idea of Turing test and the idea of adversarial learning strategy, we propose to design a model based on generative deep neural networks that interestingly allow to generate accurate responses optimized by the mechanics of imitating human-generated conversations. Experimental results demonstrate that the proposed models produce more natural and accurate responses, yielding significant gains in BLEU scores.\",\"PeriodicalId\":330865,\"journal\":{\"name\":\"2022 14th International Conference on Knowledge and Systems Engineering (KSE)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 14th International Conference on Knowledge and Systems Engineering (KSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/KSE56063.2022.9953771\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Knowledge and Systems Engineering (KSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KSE56063.2022.9953771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

会话代理越来越受到人们的欢迎,并在广泛的实际应用领域得到了应用。这些代理的主要任务不仅是为给定查询生成与上下文相适应的响应,而且还要使对话类似于人类。由于基于深度学习的模型在自然语言建模中的能力,最近的研究在设计会话代理方面取得了进展,这些会话代理可以提供更准确的语义响应。然而,在这些研究中,这种会话环境中的自然性并没有得到足够的重视。本文旨在结合会话的准确性和自然度这两个重要标准来开发一个新的会话代理模型。为此,受图灵测试思想和对抗性学习策略思想的启发,我们提出设计一个基于生成式深度神经网络的模型,有趣的是,该模型允许通过模仿人类生成的对话机制来生成优化的准确响应。实验结果表明,所提出的模型产生了更自然和准确的反应,在BLEU分数上取得了显著的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards a Human-like Chatbot using Deep Adversarial Learning
Conversational agents are getting more popular and applied in a wide range of practical application areas. The main task of these agents is not only to generate context-appropriate responses to a given query but also to make the conversation human-like. Thanks to the ability of deep learning based models in natural language modeling, recent studies have made progress in designing conversational agents that can provide more semantically accurate responses. However, the naturalness in such conversation setting has not been given adequate attention in these studies. This paper aims to incorporate both important criteria of accuracy and naturalness of conversation in developing a new model for conversational agents. To this end, inspired by the idea of Turing test and the idea of adversarial learning strategy, we propose to design a model based on generative deep neural networks that interestingly allow to generate accurate responses optimized by the mechanics of imitating human-generated conversations. Experimental results demonstrate that the proposed models produce more natural and accurate responses, yielding significant gains in BLEU scores.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DWEN: A novel method for accurate estimation of cell type compositions from bulk data samples Polygenic risk scores adaptation for Height in a Vietnamese population Sentiment Classification for Beauty-fashion Reviews An Automated Stub Method for Unit Testing C/C++ Projects Knowledge-based Problem Solving and Reasoning methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1