基于卷积神经网络的LDPC码分类

B. Comar
{"title":"基于卷积神经网络的LDPC码分类","authors":"B. Comar","doi":"10.1109/WOCC48579.2020.9114915","DOIUrl":null,"url":null,"abstract":"This paper discusses the performance of an LDPC code classification system. Three randomly generated binary LDPC codes are created, all having the same codeword size and coderate. Multi-scaled convolutional neural networks are employed to classify codeword streams. High classification accuracies are obtained with relatively small networks.","PeriodicalId":187607,"journal":{"name":"2020 29th Wireless and Optical Communications Conference (WOCC)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"LDPC Code Classification using Convolutional Neural Networks\",\"authors\":\"B. Comar\",\"doi\":\"10.1109/WOCC48579.2020.9114915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses the performance of an LDPC code classification system. Three randomly generated binary LDPC codes are created, all having the same codeword size and coderate. Multi-scaled convolutional neural networks are employed to classify codeword streams. High classification accuracies are obtained with relatively small networks.\",\"PeriodicalId\":187607,\"journal\":{\"name\":\"2020 29th Wireless and Optical Communications Conference (WOCC)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 29th Wireless and Optical Communications Conference (WOCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WOCC48579.2020.9114915\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 29th Wireless and Optical Communications Conference (WOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WOCC48579.2020.9114915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文讨论了LDPC码分类系统的性能。创建了三个随机生成的二进制LDPC码,它们都具有相同的码字大小和码码率。采用多尺度卷积神经网络对码字流进行分类。用相对较小的网络就能获得较高的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LDPC Code Classification using Convolutional Neural Networks
This paper discusses the performance of an LDPC code classification system. Three randomly generated binary LDPC codes are created, all having the same codeword size and coderate. Multi-scaled convolutional neural networks are employed to classify codeword streams. High classification accuracies are obtained with relatively small networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
[Copyright notice] MAC Protocol Identification Using Convolutional Neural Networks Efficient Methods and Architectures for Mean and Variance Estimations of QAM Symbols A Convolutional Neural Network Approach to Improving Network Visibility Data-driven Surplus Material Prediction in Steel Coil Production
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1