内窥镜图像的支持向量机分类

D. Surangsrirat, M. Tapia, Weizhao Zhao
{"title":"内窥镜图像的支持向量机分类","authors":"D. Surangsrirat, M. Tapia, Weizhao Zhao","doi":"10.1109/SECON.2010.5453834","DOIUrl":null,"url":null,"abstract":"This paper presents an application of support vector machines (SVMs) to mu I ti class problem in endoscopie image classification. Many studies have reported that SVMs have met with success in the texture classification problem. As an endoscopie image poses rich information expressed by texture features, we therefore investigate the potential of SVMs in this task. Strategy for multiclass problem based on an ensemble of binary classifiers is also implemented since the traditional SVMs algorithm deals with single label classification problems. The proposed scheme demonstrated an excellent classification result for multiclass problem in endoscopie image classification. We also show how a distortion correction helps further improve the results.","PeriodicalId":286940,"journal":{"name":"Proceedings of the IEEE SoutheastCon 2010 (SoutheastCon)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Classification of endoscopie images using support vector machines\",\"authors\":\"D. Surangsrirat, M. Tapia, Weizhao Zhao\",\"doi\":\"10.1109/SECON.2010.5453834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an application of support vector machines (SVMs) to mu I ti class problem in endoscopie image classification. Many studies have reported that SVMs have met with success in the texture classification problem. As an endoscopie image poses rich information expressed by texture features, we therefore investigate the potential of SVMs in this task. Strategy for multiclass problem based on an ensemble of binary classifiers is also implemented since the traditional SVMs algorithm deals with single label classification problems. The proposed scheme demonstrated an excellent classification result for multiclass problem in endoscopie image classification. We also show how a distortion correction helps further improve the results.\",\"PeriodicalId\":286940,\"journal\":{\"name\":\"Proceedings of the IEEE SoutheastCon 2010 (SoutheastCon)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE SoutheastCon 2010 (SoutheastCon)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SECON.2010.5453834\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE SoutheastCon 2010 (SoutheastCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECON.2010.5453834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了支持向量机(svm)在内窥镜图像分类中的应用。许多研究报道支持向量机在纹理分类问题上取得了成功。由于内窥镜图像具有通过纹理特征表达的丰富信息,因此我们研究支持向量机在该任务中的潜力。由于传统的支持向量机算法处理的是单标签分类问题,本文还实现了基于二分类器集成的多类问题处理策略。该方法对内镜图像分类中的多类问题具有很好的分类效果。我们还展示了失真校正如何有助于进一步改善结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classification of endoscopie images using support vector machines
This paper presents an application of support vector machines (SVMs) to mu I ti class problem in endoscopie image classification. Many studies have reported that SVMs have met with success in the texture classification problem. As an endoscopie image poses rich information expressed by texture features, we therefore investigate the potential of SVMs in this task. Strategy for multiclass problem based on an ensemble of binary classifiers is also implemented since the traditional SVMs algorithm deals with single label classification problems. The proposed scheme demonstrated an excellent classification result for multiclass problem in endoscopie image classification. We also show how a distortion correction helps further improve the results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sensor information framework: Using workflow to integrate distributed sensor services PowerMon: Fine-grained and integrated power monitoring for commodity computer systems Acquisition and analysis of Terahertz Time Domain imaging and sensing Using aspects for testing nonfunctional requirements in object-oriented systems Wafer bonding technique based GaN/Quantum Dots/GaN system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1