Junhyun Cho, Hyungki Shin, Jongjae Cho, H. Ra, C. Roh, Beomjoon Lee, Gilbong Lee, Bongsu Choi, Y. Baik
{"title":"轴向汽轮发电机超临界二氧化碳动力循环试验回路的研制与运行","authors":"Junhyun Cho, Hyungki Shin, Jongjae Cho, H. Ra, C. Roh, Beomjoon Lee, Gilbong Lee, Bongsu Choi, Y. Baik","doi":"10.1115/GT2018-76488","DOIUrl":null,"url":null,"abstract":"In order to overcome reported failure problems of turbomachinery for the supercritical carbon dioxide power cycle induced by the high rotational speed and axial force, an axial impulse-type turbo-generator with a partial admission nozzle was designed and manufactured to reduce the rotational speed and axial force. The turbine wheel part was separated by carbon ring-type mechanical seals to use conventional oillubricated tilting-pad bearings. A simple transcritical cycle using a liquid CO2 pump was constructed to drive the turbogenerator. A 600,000 kcal/h LNG fired thermal oil boiler and 200 RT chiller were used as a heat source and heat sink. The target turbine inlet temperature and pressure were 200°C and 130 bar, respectively. Two printed circuit heat exchangers were manufactured for both sides of the heater and cooler. A leakage make-up system using a reciprocating CO2 compressor; CO2 supply valve-train to the main loop and mechanical seal; and an oil cooler for the bearings, load bank, and control systems were installed. Prior to the turbine power-generating operation, a turbine bypass loop was operated using an air-driven control valve to determine the system mass flow rate and create turbine inlet conditions. Then, 11 kW of electric power was obtained under 205°C and 100 bar turbine inlet conditions, and the continuous operating time was 45 min.","PeriodicalId":412490,"journal":{"name":"Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Development and Operation of Supercritical Carbon Dioxide Power Cycle Test Loop With Axial Turbo-Generator\",\"authors\":\"Junhyun Cho, Hyungki Shin, Jongjae Cho, H. Ra, C. Roh, Beomjoon Lee, Gilbong Lee, Bongsu Choi, Y. Baik\",\"doi\":\"10.1115/GT2018-76488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to overcome reported failure problems of turbomachinery for the supercritical carbon dioxide power cycle induced by the high rotational speed and axial force, an axial impulse-type turbo-generator with a partial admission nozzle was designed and manufactured to reduce the rotational speed and axial force. The turbine wheel part was separated by carbon ring-type mechanical seals to use conventional oillubricated tilting-pad bearings. A simple transcritical cycle using a liquid CO2 pump was constructed to drive the turbogenerator. A 600,000 kcal/h LNG fired thermal oil boiler and 200 RT chiller were used as a heat source and heat sink. The target turbine inlet temperature and pressure were 200°C and 130 bar, respectively. Two printed circuit heat exchangers were manufactured for both sides of the heater and cooler. A leakage make-up system using a reciprocating CO2 compressor; CO2 supply valve-train to the main loop and mechanical seal; and an oil cooler for the bearings, load bank, and control systems were installed. Prior to the turbine power-generating operation, a turbine bypass loop was operated using an air-driven control valve to determine the system mass flow rate and create turbine inlet conditions. Then, 11 kW of electric power was obtained under 205°C and 100 bar turbine inlet conditions, and the continuous operating time was 45 min.\",\"PeriodicalId\":412490,\"journal\":{\"name\":\"Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/GT2018-76488\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/GT2018-76488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development and Operation of Supercritical Carbon Dioxide Power Cycle Test Loop With Axial Turbo-Generator
In order to overcome reported failure problems of turbomachinery for the supercritical carbon dioxide power cycle induced by the high rotational speed and axial force, an axial impulse-type turbo-generator with a partial admission nozzle was designed and manufactured to reduce the rotational speed and axial force. The turbine wheel part was separated by carbon ring-type mechanical seals to use conventional oillubricated tilting-pad bearings. A simple transcritical cycle using a liquid CO2 pump was constructed to drive the turbogenerator. A 600,000 kcal/h LNG fired thermal oil boiler and 200 RT chiller were used as a heat source and heat sink. The target turbine inlet temperature and pressure were 200°C and 130 bar, respectively. Two printed circuit heat exchangers were manufactured for both sides of the heater and cooler. A leakage make-up system using a reciprocating CO2 compressor; CO2 supply valve-train to the main loop and mechanical seal; and an oil cooler for the bearings, load bank, and control systems were installed. Prior to the turbine power-generating operation, a turbine bypass loop was operated using an air-driven control valve to determine the system mass flow rate and create turbine inlet conditions. Then, 11 kW of electric power was obtained under 205°C and 100 bar turbine inlet conditions, and the continuous operating time was 45 min.