使用位置敏感哈希的可扩展的基于内容的图像检索方案

Wang Weihong, Wang Song
{"title":"使用位置敏感哈希的可扩展的基于内容的图像检索方案","authors":"Wang Weihong, Wang Song","doi":"10.1109/CINC.2009.124","DOIUrl":null,"url":null,"abstract":"To develop a fast solution for indexing high-dimensional image contents, which is crucial to building large-scale CBIR systems, is one key challenge in content-based image retrieval (CBIR). In this paper, we propose a scalable content-based image retrieval scheme using locality-sensitive hashing (LSH), and conduct extensive evaluations on a large image test-bed of a half million images. To the best of our knowledge, there is less comprehensive study on large-scale CBIR evaluation with a half million images. Our empirical results show that our proposed solution is able to scale for hundreds of thousands of images, which is promising for building web-scale CBIR systems.","PeriodicalId":173506,"journal":{"name":"2009 International Conference on Computational Intelligence and Natural Computing","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A Scalable Content-based Image Retrieval Scheme Using Locality-sensitive Hashing\",\"authors\":\"Wang Weihong, Wang Song\",\"doi\":\"10.1109/CINC.2009.124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To develop a fast solution for indexing high-dimensional image contents, which is crucial to building large-scale CBIR systems, is one key challenge in content-based image retrieval (CBIR). In this paper, we propose a scalable content-based image retrieval scheme using locality-sensitive hashing (LSH), and conduct extensive evaluations on a large image test-bed of a half million images. To the best of our knowledge, there is less comprehensive study on large-scale CBIR evaluation with a half million images. Our empirical results show that our proposed solution is able to scale for hundreds of thousands of images, which is promising for building web-scale CBIR systems.\",\"PeriodicalId\":173506,\"journal\":{\"name\":\"2009 International Conference on Computational Intelligence and Natural Computing\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Computational Intelligence and Natural Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CINC.2009.124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Computational Intelligence and Natural Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CINC.2009.124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

基于内容的图像检索(CBIR)技术面临的一个关键挑战是如何开发一种快速的高维图像内容索引方法,这对于构建大规模的图像检索系统至关重要。在本文中,我们提出了一种使用位置敏感散列(LSH)的可扩展的基于内容的图像检索方案,并在一个包含50万张图像的大型图像测试台上进行了广泛的评估。据我们所知,目前对50万张图像的大规模CBIR评价的研究还不够全面。我们的实证结果表明,我们提出的解决方案能够扩展到数十万张图像,这对于构建web规模的CBIR系统是有希望的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Scalable Content-based Image Retrieval Scheme Using Locality-sensitive Hashing
To develop a fast solution for indexing high-dimensional image contents, which is crucial to building large-scale CBIR systems, is one key challenge in content-based image retrieval (CBIR). In this paper, we propose a scalable content-based image retrieval scheme using locality-sensitive hashing (LSH), and conduct extensive evaluations on a large image test-bed of a half million images. To the best of our knowledge, there is less comprehensive study on large-scale CBIR evaluation with a half million images. Our empirical results show that our proposed solution is able to scale for hundreds of thousands of images, which is promising for building web-scale CBIR systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Edge Detection Algorithm for Uneven Lighting Image Based on Vision Theory Independent Global Constraints Web Service Composition Optimization Based on Color Petri Net Summarization for Internet News Based on Clustering Algorithm Some Characterizations about 4-band Symmetric Cardinal Orthogonal Scaling Function Nutritional Diet Decision Using Multi-objective Difference Evolutionary Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1