{"title":"基于增强现实的远程操作平台的设计与实现","authors":"Huan Hu, Xin Gao, Hanxu Sun, Q. Jia, Yanheng Zhang","doi":"10.1109/ICCI-CC.2013.6622234","DOIUrl":null,"url":null,"abstract":"Predictive display based on virtual environment models is an effective method of solving the problem of time delay in teleoperation. However, this method will not work well without the precise virtual environment model. Thus, it is of great significance that augmented reality with video feedback is introduced into teleoperation, instead of the virtual environment models. A teleoperation system platform based on augmented reality was developed to improve system stability and enhance system telepresence, facilitating the operator's observation and operation. The improved algorithm ARToolkit-based made the system adaptable to many types of lighting environments. This paper introduces system structure and the realization of key modules. Lots of experiments such as pressing the button, pulling the drawer and so on are also conducted to evaluate the system performance. The simulation results indicate that the proposed system can compensate the defect of prediction and improve teleoperation system reliability.","PeriodicalId":130244,"journal":{"name":"2013 IEEE 12th International Conference on Cognitive Informatics and Cognitive Computing","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Design and implementation of the teleoperation platform based on augmented reality\",\"authors\":\"Huan Hu, Xin Gao, Hanxu Sun, Q. Jia, Yanheng Zhang\",\"doi\":\"10.1109/ICCI-CC.2013.6622234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predictive display based on virtual environment models is an effective method of solving the problem of time delay in teleoperation. However, this method will not work well without the precise virtual environment model. Thus, it is of great significance that augmented reality with video feedback is introduced into teleoperation, instead of the virtual environment models. A teleoperation system platform based on augmented reality was developed to improve system stability and enhance system telepresence, facilitating the operator's observation and operation. The improved algorithm ARToolkit-based made the system adaptable to many types of lighting environments. This paper introduces system structure and the realization of key modules. Lots of experiments such as pressing the button, pulling the drawer and so on are also conducted to evaluate the system performance. The simulation results indicate that the proposed system can compensate the defect of prediction and improve teleoperation system reliability.\",\"PeriodicalId\":130244,\"journal\":{\"name\":\"2013 IEEE 12th International Conference on Cognitive Informatics and Cognitive Computing\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 12th International Conference on Cognitive Informatics and Cognitive Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCI-CC.2013.6622234\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 12th International Conference on Cognitive Informatics and Cognitive Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCI-CC.2013.6622234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and implementation of the teleoperation platform based on augmented reality
Predictive display based on virtual environment models is an effective method of solving the problem of time delay in teleoperation. However, this method will not work well without the precise virtual environment model. Thus, it is of great significance that augmented reality with video feedback is introduced into teleoperation, instead of the virtual environment models. A teleoperation system platform based on augmented reality was developed to improve system stability and enhance system telepresence, facilitating the operator's observation and operation. The improved algorithm ARToolkit-based made the system adaptable to many types of lighting environments. This paper introduces system structure and the realization of key modules. Lots of experiments such as pressing the button, pulling the drawer and so on are also conducted to evaluate the system performance. The simulation results indicate that the proposed system can compensate the defect of prediction and improve teleoperation system reliability.