一种基于模型预测控制的非定时pn轨迹跟踪算法

D. Lefebvre, E. Leclercq
{"title":"一种基于模型预测控制的非定时pn轨迹跟踪算法","authors":"D. Lefebvre, E. Leclercq","doi":"10.1109/MED.2014.6961378","DOIUrl":null,"url":null,"abstract":"This paper is about trajectory tracking for DESs. The main contribution is to compute incrementally control sequences approaching the minimal length sequences. The method is based on a partial exploration of the PN reachability graph and inspired from the MPC approach. The method is suitable for bounded and unbounded PNs. It also works for PNs with weighted arcs and for PNs with some uncontrollable transitions.","PeriodicalId":127957,"journal":{"name":"22nd Mediterranean Conference on Control and Automation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An algorithm based on model predictive control for trajectories tracking with untimed PNs\",\"authors\":\"D. Lefebvre, E. Leclercq\",\"doi\":\"10.1109/MED.2014.6961378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is about trajectory tracking for DESs. The main contribution is to compute incrementally control sequences approaching the minimal length sequences. The method is based on a partial exploration of the PN reachability graph and inspired from the MPC approach. The method is suitable for bounded and unbounded PNs. It also works for PNs with weighted arcs and for PNs with some uncontrollable transitions.\",\"PeriodicalId\":127957,\"journal\":{\"name\":\"22nd Mediterranean Conference on Control and Automation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"22nd Mediterranean Conference on Control and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MED.2014.6961378\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd Mediterranean Conference on Control and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED.2014.6961378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究的是DESs的轨迹跟踪问题。主要贡献是计算接近最小长度序列的增量控制序列。该方法基于对PN可达性图的部分探索,并受到MPC方法的启发。该方法适用于有界和无界pn。它也适用于具有加权弧的pn和具有一些不可控过渡的pn。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An algorithm based on model predictive control for trajectories tracking with untimed PNs
This paper is about trajectory tracking for DESs. The main contribution is to compute incrementally control sequences approaching the minimal length sequences. The method is based on a partial exploration of the PN reachability graph and inspired from the MPC approach. The method is suitable for bounded and unbounded PNs. It also works for PNs with weighted arcs and for PNs with some uncontrollable transitions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Online adaptive geometry predictor of aquaculture fish-nets Mathematical study of the global dynamics of a concave gene expression model Placement of fixed modes by decentralised output feedback control Identification and switching quasi-LPV control of a four wheeled omnidirectional robot Robust anomaly detection in dynamic networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1