{"title":"基于分类数据的城市交通状况分析与预测","authors":"Yuan-yuan Chen, Yisheng Lv","doi":"10.1109/SOLI.2016.7551671","DOIUrl":null,"url":null,"abstract":"Urban traffic prediction is a critical component in intelligent transportation systems for both citizens and traffic management agencies. It is beneficial to know current and future traffic conditions prior a trip or a route for travelers. And it is also very helpful for proactive traffic management for transportation administrative sectors. In this paper, we apply classification techniques to forecast traffic conditions based on categorical data collected from open web maps. To this end, we first collect traffic condition data from AMAP which is a web map, navigation and location based services provider in China. Then we primarily analyze AMAP data with trend analysis and power spectrum analysis. Finally, we employ random walk, naïve Bayes, decision tree and support vector machine methods to forecast traffic conditions in the future based on historical and current conditions. Experimental results demonstrate that it is feasible to make forecast on traffic conditions with reasonable accuracy.","PeriodicalId":128068,"journal":{"name":"2016 IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Analysis and forecasting of urban traffic condition based on categorical data\",\"authors\":\"Yuan-yuan Chen, Yisheng Lv\",\"doi\":\"10.1109/SOLI.2016.7551671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Urban traffic prediction is a critical component in intelligent transportation systems for both citizens and traffic management agencies. It is beneficial to know current and future traffic conditions prior a trip or a route for travelers. And it is also very helpful for proactive traffic management for transportation administrative sectors. In this paper, we apply classification techniques to forecast traffic conditions based on categorical data collected from open web maps. To this end, we first collect traffic condition data from AMAP which is a web map, navigation and location based services provider in China. Then we primarily analyze AMAP data with trend analysis and power spectrum analysis. Finally, we employ random walk, naïve Bayes, decision tree and support vector machine methods to forecast traffic conditions in the future based on historical and current conditions. Experimental results demonstrate that it is feasible to make forecast on traffic conditions with reasonable accuracy.\",\"PeriodicalId\":128068,\"journal\":{\"name\":\"2016 IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SOLI.2016.7551671\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOLI.2016.7551671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis and forecasting of urban traffic condition based on categorical data
Urban traffic prediction is a critical component in intelligent transportation systems for both citizens and traffic management agencies. It is beneficial to know current and future traffic conditions prior a trip or a route for travelers. And it is also very helpful for proactive traffic management for transportation administrative sectors. In this paper, we apply classification techniques to forecast traffic conditions based on categorical data collected from open web maps. To this end, we first collect traffic condition data from AMAP which is a web map, navigation and location based services provider in China. Then we primarily analyze AMAP data with trend analysis and power spectrum analysis. Finally, we employ random walk, naïve Bayes, decision tree and support vector machine methods to forecast traffic conditions in the future based on historical and current conditions. Experimental results demonstrate that it is feasible to make forecast on traffic conditions with reasonable accuracy.