{"title":"量子电路的测试生成与故障定位","authors":"M. Perkowski, J. Biamonte, M. Lukac","doi":"10.1109/ISMVL.2005.46","DOIUrl":null,"url":null,"abstract":"It is believed that quantum computing will begin to have a practical impact in industry around year 2010. We propose an approach to test generation and fault localization for a wide category of fault models. While in general we follow the methods used in test of standard circuits, there are two significant differences: (2) we use both deterministic and probabilistic tests to detect faults, (2) we use special measurement gates to determine the internal states. A fault table is created that includes probabilistic information. \"Probabilistic set covering\" and \"probabilistic adaptive trees\" that generalize those known in standard circuits, are next used.","PeriodicalId":340578,"journal":{"name":"35th International Symposium on Multiple-Valued Logic (ISMVL'05)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Test generation and fault localization for quantum circuits\",\"authors\":\"M. Perkowski, J. Biamonte, M. Lukac\",\"doi\":\"10.1109/ISMVL.2005.46\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is believed that quantum computing will begin to have a practical impact in industry around year 2010. We propose an approach to test generation and fault localization for a wide category of fault models. While in general we follow the methods used in test of standard circuits, there are two significant differences: (2) we use both deterministic and probabilistic tests to detect faults, (2) we use special measurement gates to determine the internal states. A fault table is created that includes probabilistic information. \\\"Probabilistic set covering\\\" and \\\"probabilistic adaptive trees\\\" that generalize those known in standard circuits, are next used.\",\"PeriodicalId\":340578,\"journal\":{\"name\":\"35th International Symposium on Multiple-Valued Logic (ISMVL'05)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"35th International Symposium on Multiple-Valued Logic (ISMVL'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.2005.46\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"35th International Symposium on Multiple-Valued Logic (ISMVL'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2005.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Test generation and fault localization for quantum circuits
It is believed that quantum computing will begin to have a practical impact in industry around year 2010. We propose an approach to test generation and fault localization for a wide category of fault models. While in general we follow the methods used in test of standard circuits, there are two significant differences: (2) we use both deterministic and probabilistic tests to detect faults, (2) we use special measurement gates to determine the internal states. A fault table is created that includes probabilistic information. "Probabilistic set covering" and "probabilistic adaptive trees" that generalize those known in standard circuits, are next used.