Hyperledger Fabric的服务发现

Yacov Manevich, Artem Barger, Y. Tock
{"title":"Hyperledger Fabric的服务发现","authors":"Yacov Manevich, Artem Barger, Y. Tock","doi":"10.1145/3210284.3219766","DOIUrl":null,"url":null,"abstract":"Hyperledger Fabric (HLF) is a modular and extensible permissioned blockchain platform released to open-source and hosted by the Linux Foundation. The platform's design exhibits principles required by enterprise grade business applications like supply-chains, financial transactions, asset management, food safety, and many more. For that end HLF introduces several innovations, two of which are smart contracts in general purpose languages (chaincode in HLF), and flexible endorsement policies, which govern whether a transaction is considered valid. Typical blockchain applications are comprised of two tiers: the first tier focuses on the modelling of the data schema and embedding of business rules into the blockchain by means of smart contracts (chaincode) and endorsment policies; and the second tier uses the SDK (Software Development Kit) provided by HLF to implement client side application logic. However there is a gap between the two tiers that hinders the rapid adoption of changes in the chaincode and endorsement policies within the client SDK. Currently, the chaincode location and endorsement policies are statically configured into the client SDK. This limits the reliability and availability of the client in the event of changes in the platform, and makes the platform more difficult to use. In this work we address and bridge the gap by describing the design and implementation of Service Discovery. Service Discovery provides APIs which allow dynamic discovery of the configuration required for the client SDK to interact with the platform, alleviating the client from the burden of maintaining it. This enables the client to rapidly adapt to changes in the platform, thus significantly improving the reliability of the application layer. It also makes the HLF platform more consumable, simplifying the job of creating blockchain applications.","PeriodicalId":412438,"journal":{"name":"Proceedings of the 12th ACM International Conference on Distributed and Event-based Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Service Discovery for Hyperledger Fabric\",\"authors\":\"Yacov Manevich, Artem Barger, Y. Tock\",\"doi\":\"10.1145/3210284.3219766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hyperledger Fabric (HLF) is a modular and extensible permissioned blockchain platform released to open-source and hosted by the Linux Foundation. The platform's design exhibits principles required by enterprise grade business applications like supply-chains, financial transactions, asset management, food safety, and many more. For that end HLF introduces several innovations, two of which are smart contracts in general purpose languages (chaincode in HLF), and flexible endorsement policies, which govern whether a transaction is considered valid. Typical blockchain applications are comprised of two tiers: the first tier focuses on the modelling of the data schema and embedding of business rules into the blockchain by means of smart contracts (chaincode) and endorsment policies; and the second tier uses the SDK (Software Development Kit) provided by HLF to implement client side application logic. However there is a gap between the two tiers that hinders the rapid adoption of changes in the chaincode and endorsement policies within the client SDK. Currently, the chaincode location and endorsement policies are statically configured into the client SDK. This limits the reliability and availability of the client in the event of changes in the platform, and makes the platform more difficult to use. In this work we address and bridge the gap by describing the design and implementation of Service Discovery. Service Discovery provides APIs which allow dynamic discovery of the configuration required for the client SDK to interact with the platform, alleviating the client from the burden of maintaining it. This enables the client to rapidly adapt to changes in the platform, thus significantly improving the reliability of the application layer. It also makes the HLF platform more consumable, simplifying the job of creating blockchain applications.\",\"PeriodicalId\":412438,\"journal\":{\"name\":\"Proceedings of the 12th ACM International Conference on Distributed and Event-based Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th ACM International Conference on Distributed and Event-based Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3210284.3219766\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th ACM International Conference on Distributed and Event-based Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3210284.3219766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

Hyperledger Fabric (HLF)是一个模块化和可扩展的许可区块链平台,发布开源,由Linux基金会托管。该平台的设计展示了企业级业务应用程序所需的原则,如供应链、金融交易、资产管理、食品安全等等。为此,HLF引入了几项创新,其中两项是通用语言的智能合约(HLF中的链码),以及灵活的背书策略,用于管理交易是否被认为有效。典型的区块链应用由两层组成:第一层侧重于数据模式的建模,并通过智能合约(链码)和背书策略将业务规则嵌入到区块链中;第二层使用HLF提供的SDK (Software Development Kit)实现客户端应用逻辑。然而,这两层之间的差距阻碍了客户端SDK中链码和背书策略变化的快速采用。目前,链码定位和背书策略是静态配置到客户端SDK中的。这限制了客户机在平台发生更改时的可靠性和可用性,并使平台更难以使用。在这项工作中,我们通过描述服务发现的设计和实现来解决和弥合这一差距。服务发现提供的api允许动态发现客户端SDK与平台交互所需的配置,从而减轻了客户端维护它的负担。这使得客户端能够快速适应平台的变化,从而显著提高了应用层的可靠性。它还使HLF平台更易于消费,简化了创建区块链应用程序的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Service Discovery for Hyperledger Fabric
Hyperledger Fabric (HLF) is a modular and extensible permissioned blockchain platform released to open-source and hosted by the Linux Foundation. The platform's design exhibits principles required by enterprise grade business applications like supply-chains, financial transactions, asset management, food safety, and many more. For that end HLF introduces several innovations, two of which are smart contracts in general purpose languages (chaincode in HLF), and flexible endorsement policies, which govern whether a transaction is considered valid. Typical blockchain applications are comprised of two tiers: the first tier focuses on the modelling of the data schema and embedding of business rules into the blockchain by means of smart contracts (chaincode) and endorsment policies; and the second tier uses the SDK (Software Development Kit) provided by HLF to implement client side application logic. However there is a gap between the two tiers that hinders the rapid adoption of changes in the chaincode and endorsement policies within the client SDK. Currently, the chaincode location and endorsement policies are statically configured into the client SDK. This limits the reliability and availability of the client in the event of changes in the platform, and makes the platform more difficult to use. In this work we address and bridge the gap by describing the design and implementation of Service Discovery. Service Discovery provides APIs which allow dynamic discovery of the configuration required for the client SDK to interact with the platform, alleviating the client from the burden of maintaining it. This enables the client to rapidly adapt to changes in the platform, thus significantly improving the reliability of the application layer. It also makes the HLF platform more consumable, simplifying the job of creating blockchain applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vessel Trajectory Prediction using Sequence-to-Sequence Models over Spatial Grid MtDetector Predicting Destinations by Nearest Neighbor Search on Training Vessel Routes Venilia, On-line Learning and Prediction of Vessel Destination Proceedings of the 12th ACM International Conference on Distributed and Event-based Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1