基于卷积LSTM预测未来帧的视频监控异常检测

Devashree R. Patrikar, M. Parate
{"title":"基于卷积LSTM预测未来帧的视频监控异常检测","authors":"Devashree R. Patrikar, M. Parate","doi":"10.1109/PCEMS58491.2023.10136044","DOIUrl":null,"url":null,"abstract":"Events that do not confront normal behavior are called anomalies and they are extremely arduous to recognize. The recent approaches that deploy a reconstruction approach for anomaly detection, predominantly emphasize minimizing the reconstruction error of training data. These techniques cannot assure larger reconstruction errors in the event of an anomaly. In our work, we propose to systematize the issue of abnormal event detection within a regime of future frame prediction. Provided a set of input video frames $i_1, i_2, i_3 \\ldots i_n$, our next-frame prediction model predicts a new frame $i_{n+1}$ instead of reconstructing the same frame $i_{n+1}$. By extending the contributions of Convolutional Neural Networks (CNNs) and Long Short Term Memory (LSTM), we propose ConvolutionalLSTM (C-LSTM) as a predictor to predict the next frame. To scrutinize the capability of the prediction model, we determine the intensity loss between the actual frame and the predicted frame. The larger error between the predicted frame and ground truth facilitates the detection of anomalous events that do not confront the expectation. This paper mainly emphasizes how well the model predicts the future frame and provides a new baseline for abnormal event detection.","PeriodicalId":330870,"journal":{"name":"2023 2nd International Conference on Paradigm Shifts in Communications Embedded Systems, Machine Learning and Signal Processing (PCEMS)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Anomaly Detection by Predicting Future Frames using Convolutional LSTM in Video Surveillance\",\"authors\":\"Devashree R. Patrikar, M. Parate\",\"doi\":\"10.1109/PCEMS58491.2023.10136044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Events that do not confront normal behavior are called anomalies and they are extremely arduous to recognize. The recent approaches that deploy a reconstruction approach for anomaly detection, predominantly emphasize minimizing the reconstruction error of training data. These techniques cannot assure larger reconstruction errors in the event of an anomaly. In our work, we propose to systematize the issue of abnormal event detection within a regime of future frame prediction. Provided a set of input video frames $i_1, i_2, i_3 \\\\ldots i_n$, our next-frame prediction model predicts a new frame $i_{n+1}$ instead of reconstructing the same frame $i_{n+1}$. By extending the contributions of Convolutional Neural Networks (CNNs) and Long Short Term Memory (LSTM), we propose ConvolutionalLSTM (C-LSTM) as a predictor to predict the next frame. To scrutinize the capability of the prediction model, we determine the intensity loss between the actual frame and the predicted frame. The larger error between the predicted frame and ground truth facilitates the detection of anomalous events that do not confront the expectation. This paper mainly emphasizes how well the model predicts the future frame and provides a new baseline for abnormal event detection.\",\"PeriodicalId\":330870,\"journal\":{\"name\":\"2023 2nd International Conference on Paradigm Shifts in Communications Embedded Systems, Machine Learning and Signal Processing (PCEMS)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 2nd International Conference on Paradigm Shifts in Communications Embedded Systems, Machine Learning and Signal Processing (PCEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PCEMS58491.2023.10136044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 2nd International Conference on Paradigm Shifts in Communications Embedded Systems, Machine Learning and Signal Processing (PCEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCEMS58491.2023.10136044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

不符合正常行为的事件被称为异常,它们非常难以识别。最近采用重构方法进行异常检测的方法,主要强调最小化训练数据的重构误差。在发生异常时,这些技术不能保证较大的重建误差。在我们的工作中,我们建议在未来框架预测的制度中系统化异常事件检测问题。提供一组输入视频帧$i_1, i_2, i_3 \ldots i_n$,我们的下一帧预测模型预测一个新的帧$i_{n+1}$,而不是重建相同的帧$i_{n+1}$。通过扩展卷积神经网络(cnn)和长短期记忆(LSTM)的贡献,我们提出了卷积allstm (C-LSTM)作为预测下一帧的预测器。为了检验预测模型的能力,我们确定了实际帧和预测帧之间的强度损失。预测框架与实际情况之间较大的误差有助于发现与期望不符的异常事件。本文主要强调了该模型对未来框架的预测能力,并为异常事件检测提供了新的基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Anomaly Detection by Predicting Future Frames using Convolutional LSTM in Video Surveillance
Events that do not confront normal behavior are called anomalies and they are extremely arduous to recognize. The recent approaches that deploy a reconstruction approach for anomaly detection, predominantly emphasize minimizing the reconstruction error of training data. These techniques cannot assure larger reconstruction errors in the event of an anomaly. In our work, we propose to systematize the issue of abnormal event detection within a regime of future frame prediction. Provided a set of input video frames $i_1, i_2, i_3 \ldots i_n$, our next-frame prediction model predicts a new frame $i_{n+1}$ instead of reconstructing the same frame $i_{n+1}$. By extending the contributions of Convolutional Neural Networks (CNNs) and Long Short Term Memory (LSTM), we propose ConvolutionalLSTM (C-LSTM) as a predictor to predict the next frame. To scrutinize the capability of the prediction model, we determine the intensity loss between the actual frame and the predicted frame. The larger error between the predicted frame and ground truth facilitates the detection of anomalous events that do not confront the expectation. This paper mainly emphasizes how well the model predicts the future frame and provides a new baseline for abnormal event detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Interactive Zira Voice Assistant- A Personalized Desktop Application Gait-Face Based Human Recognition From Distant Video Survey on Diverse Image Inpainting using Diffusion Models Survey, Analysis and Association Rules derivation using Apriori Method for buying preference amongst kids of age-group 5 to 9 in India Implementing Chaos Based Optimisations on Neural Networks for Predictions of Distributed Denial-of-Service (DDoS) Attacks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1