基于社会传感和神经网络的实时停电检测系统

Sifat Shahriar Khan, Jin Wei
{"title":"基于社会传感和神经网络的实时停电检测系统","authors":"Sifat Shahriar Khan, Jin Wei","doi":"10.1109/GLOBALSIP.2018.8646443","DOIUrl":null,"url":null,"abstract":"With the omnipresence of big data, social sensing has become a valuable technique for information retrieval and event detection. In recent years, extensive research has been conducted on using social sensing as a platform to detect critical events and emergency situations such as natural disasters, criminal activities, and power outages. In this paper, we focus on detecting real-time power outages using social sensing by investigating different predictive models, preprocessing techniques and feature extraction methods. The investigation shows that multi-layer perception neural network outperforms other popular predictive models. The paper proposes a real-time situational-awareness mechanism to detect the ongoing power outages and extract useful information for power outage management. In the proposed framework, for temporal analysis, a modified approach of Kleinberg’s burst detection algorithm is proposed to ensure the prompt detection of power outages. This study paves the way for future investigation and innovation in efficient real-time event detection using social sensing.","PeriodicalId":119131,"journal":{"name":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Real-Time Power Outage Detection System using Social Sensing and Neural Networks\",\"authors\":\"Sifat Shahriar Khan, Jin Wei\",\"doi\":\"10.1109/GLOBALSIP.2018.8646443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the omnipresence of big data, social sensing has become a valuable technique for information retrieval and event detection. In recent years, extensive research has been conducted on using social sensing as a platform to detect critical events and emergency situations such as natural disasters, criminal activities, and power outages. In this paper, we focus on detecting real-time power outages using social sensing by investigating different predictive models, preprocessing techniques and feature extraction methods. The investigation shows that multi-layer perception neural network outperforms other popular predictive models. The paper proposes a real-time situational-awareness mechanism to detect the ongoing power outages and extract useful information for power outage management. In the proposed framework, for temporal analysis, a modified approach of Kleinberg’s burst detection algorithm is proposed to ensure the prompt detection of power outages. This study paves the way for future investigation and innovation in efficient real-time event detection using social sensing.\",\"PeriodicalId\":119131,\"journal\":{\"name\":\"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOBALSIP.2018.8646443\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBALSIP.2018.8646443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

随着大数据的无所不在,社会感知已成为信息检索和事件检测的重要技术。近年来,利用社会感知作为平台,对自然灾害、犯罪活动、停电等重大事件和紧急情况进行了广泛的研究。在本文中,我们通过研究不同的预测模型、预处理技术和特征提取方法,专注于利用社会传感技术检测实时停电。研究表明,多层感知神经网络优于其他流行的预测模型。本文提出了一种实时态势感知机制,用于检测持续停电并提取有用信息,用于停电管理。在该框架中,针对时间分析,提出了一种改进的Kleinberg突发检测算法,以确保及时检测到停电。这项研究为未来利用社会传感进行高效实时事件检测的研究和创新铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Real-Time Power Outage Detection System using Social Sensing and Neural Networks
With the omnipresence of big data, social sensing has become a valuable technique for information retrieval and event detection. In recent years, extensive research has been conducted on using social sensing as a platform to detect critical events and emergency situations such as natural disasters, criminal activities, and power outages. In this paper, we focus on detecting real-time power outages using social sensing by investigating different predictive models, preprocessing techniques and feature extraction methods. The investigation shows that multi-layer perception neural network outperforms other popular predictive models. The paper proposes a real-time situational-awareness mechanism to detect the ongoing power outages and extract useful information for power outage management. In the proposed framework, for temporal analysis, a modified approach of Kleinberg’s burst detection algorithm is proposed to ensure the prompt detection of power outages. This study paves the way for future investigation and innovation in efficient real-time event detection using social sensing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ADAPTIVE CSP FOR USER INDEPENDENCE IN MI-BCI PARADIGM FOR UPPER LIMB STROKE REHABILITATION SPATIAL FOURIER TRANSFORM FOR DETECTION AND ANALYSIS OF PERIODIC ASTROPHYSICAL PULSES CNN ARCHITECTURES FOR GRAPH DATA OVERT SPEECH RETRIEVAL FROM NEUROMAGNETIC SIGNALS USING WAVELETS AND ARTIFICIAL NEURAL NETWORKS CNN BASED RICIAN K FACTOR ESTIMATION FOR NON-STATIONARY INDUSTRIAL FADING CHANNEL
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1