肾脏DCE-MR图像中动脉输入功能的自动测定

A. Klepaczko, Martyna Muszelska, E. Eikefjord, J. Rørvik, A. Lundervold
{"title":"肾脏DCE-MR图像中动脉输入功能的自动测定","authors":"A. Klepaczko, Martyna Muszelska, E. Eikefjord, J. Rørvik, A. Lundervold","doi":"10.23919/SPA.2018.8563431","DOIUrl":null,"url":null,"abstract":"This paper concerns the problem of estimating renal perfusion based on the Dynamic Contrast Enhanced MRI. Quantification of perfusion parameters is possible by the means of pharmacokinetic modeling. Several mathematical formulations of PK models have been proposed. In any case, it is important to determine the so-called arterial input function, i.e. the time-course of the contrast agent bolus in a main feeding artery. In case of the kidney it is the descending aorta. Usually, determination of AIF is performed manually. We propose the automatic procedure to determine AIF, thus reducing the involvement of a human observer in the image processing pipeline. Our proposed method uses a combination of image processing and machine learning algorithms firstly to identify all voxels potentially belonging to the descending aorta and secondly to select those voxels which are free from the inflow artifact. The tests of our method performed for 10 DCE-MRI datasets show its effectiveness in terms of the resulting perfusion parameters measurements.","PeriodicalId":265587,"journal":{"name":"2018 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated determination of arterial input function in DCE-MR images of the kidney\",\"authors\":\"A. Klepaczko, Martyna Muszelska, E. Eikefjord, J. Rørvik, A. Lundervold\",\"doi\":\"10.23919/SPA.2018.8563431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper concerns the problem of estimating renal perfusion based on the Dynamic Contrast Enhanced MRI. Quantification of perfusion parameters is possible by the means of pharmacokinetic modeling. Several mathematical formulations of PK models have been proposed. In any case, it is important to determine the so-called arterial input function, i.e. the time-course of the contrast agent bolus in a main feeding artery. In case of the kidney it is the descending aorta. Usually, determination of AIF is performed manually. We propose the automatic procedure to determine AIF, thus reducing the involvement of a human observer in the image processing pipeline. Our proposed method uses a combination of image processing and machine learning algorithms firstly to identify all voxels potentially belonging to the descending aorta and secondly to select those voxels which are free from the inflow artifact. The tests of our method performed for 10 DCE-MRI datasets show its effectiveness in terms of the resulting perfusion parameters measurements.\",\"PeriodicalId\":265587,\"journal\":{\"name\":\"2018 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/SPA.2018.8563431\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/SPA.2018.8563431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了基于动态增强MRI的肾灌注估计问题。通过药代动力学建模,可以对灌注参数进行量化。提出了几种PK模型的数学公式。在任何情况下,重要的是确定所谓的动脉输入函数,即造影剂在主要供血动脉内的时间过程。肾脏的情况是降主动脉。通常,AIF的测定是手工进行的。我们提出了自动确定AIF的程序,从而减少了人类观察者在图像处理流程中的参与。我们提出的方法首先使用图像处理和机器学习算法相结合的方法来识别所有可能属于降主动脉的体素,然后选择那些没有流入伪影的体素。我们的方法对10个DCE-MRI数据集进行了测试,显示了其在所得灌注参数测量方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automated determination of arterial input function in DCE-MR images of the kidney
This paper concerns the problem of estimating renal perfusion based on the Dynamic Contrast Enhanced MRI. Quantification of perfusion parameters is possible by the means of pharmacokinetic modeling. Several mathematical formulations of PK models have been proposed. In any case, it is important to determine the so-called arterial input function, i.e. the time-course of the contrast agent bolus in a main feeding artery. In case of the kidney it is the descending aorta. Usually, determination of AIF is performed manually. We propose the automatic procedure to determine AIF, thus reducing the involvement of a human observer in the image processing pipeline. Our proposed method uses a combination of image processing and machine learning algorithms firstly to identify all voxels potentially belonging to the descending aorta and secondly to select those voxels which are free from the inflow artifact. The tests of our method performed for 10 DCE-MRI datasets show its effectiveness in terms of the resulting perfusion parameters measurements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vehicle detector training with labels derived from background subtraction algorithms in video surveillance Automatic 3D segmentation of MRI data for detection of head and neck cancerous lymph nodes Centerline-Radius Polygonal-Mesh Modeling of Bifurcated Blood Vessels in 3D Images using Conformal Mapping Active elimination of tonal components in acoustic signals An adaptive transmission algorithm for an inertial motion capture system in the aspect of energy saving
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1