硬件多线程事务

Jordan Fix, N. P. Nagendra, Sotiris Apostolakis, Hansen Zhang, Sophie Qiu, David I. August
{"title":"硬件多线程事务","authors":"Jordan Fix, N. P. Nagendra, Sotiris Apostolakis, Hansen Zhang, Sophie Qiu, David I. August","doi":"10.1145/3173162.3173172","DOIUrl":null,"url":null,"abstract":"Speculation with transactional memory systems helps pro- grammers and compilers produce profitable thread-level parallel programs. Prior work shows that supporting transactions that can span multiple threads, rather than requiring transactions be contained within a single thread, enables new types of speculative parallelization techniques for both programmers and parallelizing compilers. Unfortunately, software support for multi-threaded transactions (MTXs) comes with significant additional inter-thread communication overhead for speculation validation. This overhead can make otherwise good parallelization unprofitable for programs with sizeable read and write sets. Some programs using these prior software MTXs overcame this problem through significant efforts by expert programmers to minimize these sets and optimize communication, capabilities which compiler technology has been unable to equivalently achieve. Instead, this paper makes speculative parallelization less laborious and more feasible through low-overhead speculation validation, presenting the first complete design, implementation, and evaluation of hardware MTXs. Even with maximal speculation validation of every load and store inside transactions of tens to hundreds of millions of instructions, profitable parallelization of complex programs can be achieved. Across 8 benchmarks, this system achieves a geomean speedup of 99% over sequential execution on a multicore machine with 4 cores.","PeriodicalId":302876,"journal":{"name":"Proceedings of the Twenty-Third International Conference on Architectural Support for Programming Languages and Operating Systems","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Hardware Multithreaded Transactions\",\"authors\":\"Jordan Fix, N. P. Nagendra, Sotiris Apostolakis, Hansen Zhang, Sophie Qiu, David I. August\",\"doi\":\"10.1145/3173162.3173172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Speculation with transactional memory systems helps pro- grammers and compilers produce profitable thread-level parallel programs. Prior work shows that supporting transactions that can span multiple threads, rather than requiring transactions be contained within a single thread, enables new types of speculative parallelization techniques for both programmers and parallelizing compilers. Unfortunately, software support for multi-threaded transactions (MTXs) comes with significant additional inter-thread communication overhead for speculation validation. This overhead can make otherwise good parallelization unprofitable for programs with sizeable read and write sets. Some programs using these prior software MTXs overcame this problem through significant efforts by expert programmers to minimize these sets and optimize communication, capabilities which compiler technology has been unable to equivalently achieve. Instead, this paper makes speculative parallelization less laborious and more feasible through low-overhead speculation validation, presenting the first complete design, implementation, and evaluation of hardware MTXs. Even with maximal speculation validation of every load and store inside transactions of tens to hundreds of millions of instructions, profitable parallelization of complex programs can be achieved. Across 8 benchmarks, this system achieves a geomean speedup of 99% over sequential execution on a multicore machine with 4 cores.\",\"PeriodicalId\":302876,\"journal\":{\"name\":\"Proceedings of the Twenty-Third International Conference on Architectural Support for Programming Languages and Operating Systems\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Twenty-Third International Conference on Architectural Support for Programming Languages and Operating Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3173162.3173172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twenty-Third International Conference on Architectural Support for Programming Languages and Operating Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3173162.3173172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

对事务性内存系统的推测有助于程序员和编译器生成有利可图的线程级并行程序。先前的工作表明,支持可以跨越多个线程的事务,而不是要求将事务包含在单个线程中,可以为程序员和并行编译器提供新型的推测并行化技术。不幸的是,对多线程事务(mtx)的软件支持带来了大量额外的线程间通信开销,用于推测验证。这种开销可能会使原本良好的并行化对具有相当大的读写集的程序无利可图。一些使用这些早期软件mtx的程序通过专业程序员的大量努力来克服这个问题,以最小化这些集合并优化通信,这些功能是编译器技术无法同等实现的。相反,本文通过低开销的推测验证使推测并行化更不费力,更可行,提出了硬件mtx的第一个完整的设计、实现和评估。即使对每个负载进行最大限度的推测验证,并在事务中存储数千万到数亿条指令,也可以实现复杂程序的有益并行化。在8个基准测试中,与4核多核机器上的顺序执行相比,该系统实现了99%的几何加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hardware Multithreaded Transactions
Speculation with transactional memory systems helps pro- grammers and compilers produce profitable thread-level parallel programs. Prior work shows that supporting transactions that can span multiple threads, rather than requiring transactions be contained within a single thread, enables new types of speculative parallelization techniques for both programmers and parallelizing compilers. Unfortunately, software support for multi-threaded transactions (MTXs) comes with significant additional inter-thread communication overhead for speculation validation. This overhead can make otherwise good parallelization unprofitable for programs with sizeable read and write sets. Some programs using these prior software MTXs overcame this problem through significant efforts by expert programmers to minimize these sets and optimize communication, capabilities which compiler technology has been unable to equivalently achieve. Instead, this paper makes speculative parallelization less laborious and more feasible through low-overhead speculation validation, presenting the first complete design, implementation, and evaluation of hardware MTXs. Even with maximal speculation validation of every load and store inside transactions of tens to hundreds of millions of instructions, profitable parallelization of complex programs can be achieved. Across 8 benchmarks, this system achieves a geomean speedup of 99% over sequential execution on a multicore machine with 4 cores.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CALOREE: Learning Control for Predictable Latency and Low Energy Session details: Session 7B: Memory 2 Session details: Session 4A: Memory 1 BranchScope: A New Side-Channel Attack on Directional Branch Predictor Devirtualizing Memory in Heterogeneous Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1