Rubaiat Habib Kazi, Tovi Grossman, Nobuyuki Umetani, G. Fitzmaurice
{"title":"运动放大器:使用2D动画原理绘制动态插图","authors":"Rubaiat Habib Kazi, Tovi Grossman, Nobuyuki Umetani, G. Fitzmaurice","doi":"10.1145/2858036.2858386","DOIUrl":null,"url":null,"abstract":"We present a sketching tool for crafting animated illustrations that contain the exaggerated dynamics of stylized 2D animations. The system provides a set of motion amplifiers which implement a set of established principles of 2D animation. These amplifiers break down a complex animation effect into independent, understandable chunks. Each amplifier imposes deformations to an underlying grid, which in turn updates the corresponding strokes. Users can combine these amplifiers at will when applying them to an existing animation, promoting rapid experimentation. By leveraging the freeform nature of sketching, our system allows users to rapidly sketch, record motion, explore exaggerated dynamics using the amplifiers, and fine-tune their animations. Practical results confirm that users with no prior experience in animation can produce expressive animated illustrations quickly and easily.","PeriodicalId":169608,"journal":{"name":"Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"Motion Amplifiers: Sketching Dynamic Illustrations Using the Principles of 2D Animation\",\"authors\":\"Rubaiat Habib Kazi, Tovi Grossman, Nobuyuki Umetani, G. Fitzmaurice\",\"doi\":\"10.1145/2858036.2858386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a sketching tool for crafting animated illustrations that contain the exaggerated dynamics of stylized 2D animations. The system provides a set of motion amplifiers which implement a set of established principles of 2D animation. These amplifiers break down a complex animation effect into independent, understandable chunks. Each amplifier imposes deformations to an underlying grid, which in turn updates the corresponding strokes. Users can combine these amplifiers at will when applying them to an existing animation, promoting rapid experimentation. By leveraging the freeform nature of sketching, our system allows users to rapidly sketch, record motion, explore exaggerated dynamics using the amplifiers, and fine-tune their animations. Practical results confirm that users with no prior experience in animation can produce expressive animated illustrations quickly and easily.\",\"PeriodicalId\":169608,\"journal\":{\"name\":\"Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2858036.2858386\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2858036.2858386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Motion Amplifiers: Sketching Dynamic Illustrations Using the Principles of 2D Animation
We present a sketching tool for crafting animated illustrations that contain the exaggerated dynamics of stylized 2D animations. The system provides a set of motion amplifiers which implement a set of established principles of 2D animation. These amplifiers break down a complex animation effect into independent, understandable chunks. Each amplifier imposes deformations to an underlying grid, which in turn updates the corresponding strokes. Users can combine these amplifiers at will when applying them to an existing animation, promoting rapid experimentation. By leveraging the freeform nature of sketching, our system allows users to rapidly sketch, record motion, explore exaggerated dynamics using the amplifiers, and fine-tune their animations. Practical results confirm that users with no prior experience in animation can produce expressive animated illustrations quickly and easily.