视觉目标识别的鲁棒不变量描述符

B. Ganesharajah, S. Mahesan, U. Pinidiyaarachchi
{"title":"视觉目标识别的鲁棒不变量描述符","authors":"B. Ganesharajah, S. Mahesan, U. Pinidiyaarachchi","doi":"10.1109/ICIINFS.2011.6038059","DOIUrl":null,"url":null,"abstract":"In the state-of-the-art visual object recognition, there are a number of descriptors that have been proposed for various visual recognition tasks. But it is still difficult to decide which descriptors have more significant impact on this task. The descriptors should be distinctive and at the same time robust to changes in viewing conditions. This paper evaluates the performance of two distinctive feature descriptors, known as SIFT and extended-SURF (e-SURF) in the context of object class recognition. Local features are computed for 11 object classes from PASCAL VOC challenge 2007 dataset and clustered using K-means method. Support Vector Machines (SVM) is used in order to analyse the performance of the descriptors in recognition. By evaluating these two descriptors it can be concluded that e-SURF slightly perform better than SIFT descriptors.","PeriodicalId":353966,"journal":{"name":"2011 6th International Conference on Industrial and Information Systems","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Robust invariant descriptors for visual object recognition\",\"authors\":\"B. Ganesharajah, S. Mahesan, U. Pinidiyaarachchi\",\"doi\":\"10.1109/ICIINFS.2011.6038059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the state-of-the-art visual object recognition, there are a number of descriptors that have been proposed for various visual recognition tasks. But it is still difficult to decide which descriptors have more significant impact on this task. The descriptors should be distinctive and at the same time robust to changes in viewing conditions. This paper evaluates the performance of two distinctive feature descriptors, known as SIFT and extended-SURF (e-SURF) in the context of object class recognition. Local features are computed for 11 object classes from PASCAL VOC challenge 2007 dataset and clustered using K-means method. Support Vector Machines (SVM) is used in order to analyse the performance of the descriptors in recognition. By evaluating these two descriptors it can be concluded that e-SURF slightly perform better than SIFT descriptors.\",\"PeriodicalId\":353966,\"journal\":{\"name\":\"2011 6th International Conference on Industrial and Information Systems\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 6th International Conference on Industrial and Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIINFS.2011.6038059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 6th International Conference on Industrial and Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIINFS.2011.6038059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在最先进的视觉对象识别中,有许多描述符已经被提出用于各种视觉识别任务。但是仍然很难确定哪个描述符对这个任务有更大的影响。描述符应该是独特的,同时对观察条件的变化具有鲁棒性。本文评估了两种不同的特征描述符SIFT和扩展surf (e-SURF)在目标类识别中的性能。从PASCAL VOC challenge 2007数据集中计算了11个对象类的局部特征,并使用K-means方法聚类。使用支持向量机(SVM)来分析描述符在识别中的性能。通过对这两种描述符的评价,可以得出e-SURF的性能略优于SIFT的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust invariant descriptors for visual object recognition
In the state-of-the-art visual object recognition, there are a number of descriptors that have been proposed for various visual recognition tasks. But it is still difficult to decide which descriptors have more significant impact on this task. The descriptors should be distinctive and at the same time robust to changes in viewing conditions. This paper evaluates the performance of two distinctive feature descriptors, known as SIFT and extended-SURF (e-SURF) in the context of object class recognition. Local features are computed for 11 object classes from PASCAL VOC challenge 2007 dataset and clustered using K-means method. Support Vector Machines (SVM) is used in order to analyse the performance of the descriptors in recognition. By evaluating these two descriptors it can be concluded that e-SURF slightly perform better than SIFT descriptors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Selective load control to provide primary frequency response in the wake of introducing new large thermal power plants to Sri Lanka A trust computing mechanism for cloud computing with multilevel thresholding Distributed beamforming techniques for dual-hop decode-and-forward MIMO relay networks Performance comparison of optical receivers using different filtering algorithms and modulation schemes A radial basis function neural network approach for multi-hour short term load-price forecasting with type of day parameter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1