阿尔巴尼亚新闻分类预测系统使用多项Naïve贝叶斯和逻辑回归算法

Lamir Shkurti, Faton Kabashi
{"title":"阿尔巴尼亚新闻分类预测系统使用多项Naïve贝叶斯和逻辑回归算法","authors":"Lamir Shkurti, Faton Kabashi","doi":"10.1109/ISMSIT52890.2021.9604602","DOIUrl":null,"url":null,"abstract":"In this paper, we proposed a system for the classification of different news in the Albanian language using the Multinomial Naïve Bayes and Logistic Regression algorithms. The system is web-based and developed with Python programing language and Flask web framework. For the classification of Albanian language news, we have used 70% of the dataset for training and 30% for tests. The result shows that our system can use for the classification of Albanian language news. The proposed Multinomial Naïve Bayes and Logistic Regression classifiers were analyzed and compared for the following evaluation parameters: Accuracy, Precision, Recall, F1-score, and Confusion Matrix. The obtained results showed that the Logistic Regression algorithm has higher accuracy compared to the Naïve Bayes Multinomial algorithm in the classification of news in the Albanian language.","PeriodicalId":120997,"journal":{"name":"2021 5th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Albanian News Category Predictor System using a Multinomial Naïve Bayes and Logistic Regression Algorithms\",\"authors\":\"Lamir Shkurti, Faton Kabashi\",\"doi\":\"10.1109/ISMSIT52890.2021.9604602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we proposed a system for the classification of different news in the Albanian language using the Multinomial Naïve Bayes and Logistic Regression algorithms. The system is web-based and developed with Python programing language and Flask web framework. For the classification of Albanian language news, we have used 70% of the dataset for training and 30% for tests. The result shows that our system can use for the classification of Albanian language news. The proposed Multinomial Naïve Bayes and Logistic Regression classifiers were analyzed and compared for the following evaluation parameters: Accuracy, Precision, Recall, F1-score, and Confusion Matrix. The obtained results showed that the Logistic Regression algorithm has higher accuracy compared to the Naïve Bayes Multinomial algorithm in the classification of news in the Albanian language.\",\"PeriodicalId\":120997,\"journal\":{\"name\":\"2021 5th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 5th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMSIT52890.2021.9604602\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 5th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMSIT52890.2021.9604602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一个系统的分类不同的新闻在阿尔巴尼亚语使用多项式Naïve贝叶斯和逻辑回归算法。该系统是基于web的,使用Python编程语言和Flask web框架进行开发。对于阿尔巴尼亚语新闻的分类,我们使用了70%的数据集用于训练,30%用于测试。结果表明,该系统可以用于阿尔巴尼亚语新闻的分类。提出的多项Naïve贝叶斯和逻辑回归分类器对以下评价参数进行了分析和比较:准确率,精度,召回率,f1得分和混淆矩阵。得到的结果表明,在阿尔巴尼亚语新闻分类中,逻辑回归算法比Naïve贝叶斯多项式算法具有更高的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Albanian News Category Predictor System using a Multinomial Naïve Bayes and Logistic Regression Algorithms
In this paper, we proposed a system for the classification of different news in the Albanian language using the Multinomial Naïve Bayes and Logistic Regression algorithms. The system is web-based and developed with Python programing language and Flask web framework. For the classification of Albanian language news, we have used 70% of the dataset for training and 30% for tests. The result shows that our system can use for the classification of Albanian language news. The proposed Multinomial Naïve Bayes and Logistic Regression classifiers were analyzed and compared for the following evaluation parameters: Accuracy, Precision, Recall, F1-score, and Confusion Matrix. The obtained results showed that the Logistic Regression algorithm has higher accuracy compared to the Naïve Bayes Multinomial algorithm in the classification of news in the Albanian language.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design Improvement of a Spoke-Type PMSG with Ferrite Magnets to Reduce Space Harmonics Fuzzy AHP-TOPSIS Hybrid Method for Indoor Positioning Technology Selection for Shipyards Assessment of Slime Mould Algorithm Based Real PID Plus Second-order Derivative Controller for Magnetic Levitation System ROS Validation for Fuzzy Logic Contro Implemented under Differential Drive Mobile Robot Physical and Digital Accessibility in Museums in the New Reality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1