{"title":"基于图的视点的不一致性分析:范畴理论方法","authors":"M. Sabetzadeh, S. Easterbrook","doi":"10.1109/ASE.2003.1240290","DOIUrl":null,"url":null,"abstract":"Eliciting the requirements for a proposed system typically involves different stakeholders with different expertise, responsibilities, and perspectives. Viewpoints-based approaches have been proposed as a way to manage incomplete and inconsistent models gathered from multiple sources. In this paper, we propose a category-theoretical framework for the analysis of fuzzy viewpoints. Informally, a fuzzy viewpoint is graph in which the elements of a lattice are used to specify the amount of knowledge available about the details of nodes and edges. By defining an appropriate notion of morphism between fuzzy viewpoints, we construct categories of fuzzy viewpoints and prove that these categories are (finitely) complete. We then show how colimits can be employed to merge the viewpoints and detect the inconsistencies that arise independent of any particular choice of viewpoint semantics. We illustrate an application of the framework through a case-study showing how fuzzy viewpoints can serve as a requirements elicitation tool in reactive systems.","PeriodicalId":114604,"journal":{"name":"18th IEEE International Conference on Automated Software Engineering, 2003. Proceedings.","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":"{\"title\":\"Analysis of inconsistency in graph-based viewpoints: a category-theoretical approach\",\"authors\":\"M. Sabetzadeh, S. Easterbrook\",\"doi\":\"10.1109/ASE.2003.1240290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Eliciting the requirements for a proposed system typically involves different stakeholders with different expertise, responsibilities, and perspectives. Viewpoints-based approaches have been proposed as a way to manage incomplete and inconsistent models gathered from multiple sources. In this paper, we propose a category-theoretical framework for the analysis of fuzzy viewpoints. Informally, a fuzzy viewpoint is graph in which the elements of a lattice are used to specify the amount of knowledge available about the details of nodes and edges. By defining an appropriate notion of morphism between fuzzy viewpoints, we construct categories of fuzzy viewpoints and prove that these categories are (finitely) complete. We then show how colimits can be employed to merge the viewpoints and detect the inconsistencies that arise independent of any particular choice of viewpoint semantics. We illustrate an application of the framework through a case-study showing how fuzzy viewpoints can serve as a requirements elicitation tool in reactive systems.\",\"PeriodicalId\":114604,\"journal\":{\"name\":\"18th IEEE International Conference on Automated Software Engineering, 2003. Proceedings.\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"53\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"18th IEEE International Conference on Automated Software Engineering, 2003. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASE.2003.1240290\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th IEEE International Conference on Automated Software Engineering, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASE.2003.1240290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis of inconsistency in graph-based viewpoints: a category-theoretical approach
Eliciting the requirements for a proposed system typically involves different stakeholders with different expertise, responsibilities, and perspectives. Viewpoints-based approaches have been proposed as a way to manage incomplete and inconsistent models gathered from multiple sources. In this paper, we propose a category-theoretical framework for the analysis of fuzzy viewpoints. Informally, a fuzzy viewpoint is graph in which the elements of a lattice are used to specify the amount of knowledge available about the details of nodes and edges. By defining an appropriate notion of morphism between fuzzy viewpoints, we construct categories of fuzzy viewpoints and prove that these categories are (finitely) complete. We then show how colimits can be employed to merge the viewpoints and detect the inconsistencies that arise independent of any particular choice of viewpoint semantics. We illustrate an application of the framework through a case-study showing how fuzzy viewpoints can serve as a requirements elicitation tool in reactive systems.