A. Masino, Daniel Forsyth, H. Nuske, J. Herrington, Jeffrey W. Pennington, Yelena Kushleyeva, Christopher P. Bonafide
{"title":"移动健康和自闭症:用机器学习和可穿戴设备数据识别压力和焦虑","authors":"A. Masino, Daniel Forsyth, H. Nuske, J. Herrington, Jeffrey W. Pennington, Yelena Kushleyeva, Christopher P. Bonafide","doi":"10.1109/CBMS.2019.00144","DOIUrl":null,"url":null,"abstract":"Consumer-grade wearables provide physiological measurements which may inform m-health applications that predict adverse outcomes. Autism Spectrum Disorder (ASD) represents a compelling example. Many individuals with ASD present with challenging behaviors that are preceded by physiological changes. Physiological measures could, therefore, support real-time interventions to avert challenging behaviors in various social settings. However, no prior research has demonstrated a methodological approach to detect these changes using wearable device data. We sought to demonstrate a machine learning approach that uses wearables data to differentiate physiological states associated with stressful and non-stressful scenarios in children with ASD. In a controlled laboratory setting, we collected heart rate and RR interval measurements during rest and during activities designed to mimic stress using a consumer-grade wearable device. Our analysis included 38 participants (22 ASD, 16 non-ASD). Following outlier removal, we extracted 20 statistical features from data collected during each patient's rest and stressful periods. Using nested leave-one-out cross-validation over 76 sample periods (38 rest / 38 stress), we trained and evaluated logistic regression (LR) and support vector machine (SVM) classifiers to label each validation sample as a rest or stressful period. The SVM and LR models achieved 93% and 87% accuracy, respectively. These results suggest that machine learning models combined with wearables data may support real-time m-health intervention applications.","PeriodicalId":311634,"journal":{"name":"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"m-Health and Autism: Recognizing Stress and Anxiety with Machine Learning and Wearables Data\",\"authors\":\"A. Masino, Daniel Forsyth, H. Nuske, J. Herrington, Jeffrey W. Pennington, Yelena Kushleyeva, Christopher P. Bonafide\",\"doi\":\"10.1109/CBMS.2019.00144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consumer-grade wearables provide physiological measurements which may inform m-health applications that predict adverse outcomes. Autism Spectrum Disorder (ASD) represents a compelling example. Many individuals with ASD present with challenging behaviors that are preceded by physiological changes. Physiological measures could, therefore, support real-time interventions to avert challenging behaviors in various social settings. However, no prior research has demonstrated a methodological approach to detect these changes using wearable device data. We sought to demonstrate a machine learning approach that uses wearables data to differentiate physiological states associated with stressful and non-stressful scenarios in children with ASD. In a controlled laboratory setting, we collected heart rate and RR interval measurements during rest and during activities designed to mimic stress using a consumer-grade wearable device. Our analysis included 38 participants (22 ASD, 16 non-ASD). Following outlier removal, we extracted 20 statistical features from data collected during each patient's rest and stressful periods. Using nested leave-one-out cross-validation over 76 sample periods (38 rest / 38 stress), we trained and evaluated logistic regression (LR) and support vector machine (SVM) classifiers to label each validation sample as a rest or stressful period. The SVM and LR models achieved 93% and 87% accuracy, respectively. These results suggest that machine learning models combined with wearables data may support real-time m-health intervention applications.\",\"PeriodicalId\":311634,\"journal\":{\"name\":\"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.2019.00144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2019.00144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
m-Health and Autism: Recognizing Stress and Anxiety with Machine Learning and Wearables Data
Consumer-grade wearables provide physiological measurements which may inform m-health applications that predict adverse outcomes. Autism Spectrum Disorder (ASD) represents a compelling example. Many individuals with ASD present with challenging behaviors that are preceded by physiological changes. Physiological measures could, therefore, support real-time interventions to avert challenging behaviors in various social settings. However, no prior research has demonstrated a methodological approach to detect these changes using wearable device data. We sought to demonstrate a machine learning approach that uses wearables data to differentiate physiological states associated with stressful and non-stressful scenarios in children with ASD. In a controlled laboratory setting, we collected heart rate and RR interval measurements during rest and during activities designed to mimic stress using a consumer-grade wearable device. Our analysis included 38 participants (22 ASD, 16 non-ASD). Following outlier removal, we extracted 20 statistical features from data collected during each patient's rest and stressful periods. Using nested leave-one-out cross-validation over 76 sample periods (38 rest / 38 stress), we trained and evaluated logistic regression (LR) and support vector machine (SVM) classifiers to label each validation sample as a rest or stressful period. The SVM and LR models achieved 93% and 87% accuracy, respectively. These results suggest that machine learning models combined with wearables data may support real-time m-health intervention applications.