{"title":"多模态数据分类问题数学模型构建的机器学习算法研究","authors":"N. Boyko","doi":"10.23939/jcpee2021.02.001","DOIUrl":null,"url":null,"abstract":"Currently, machine learning algorithms (ML) are increasingly integrated into everyday life. There are many areas of modern life where classification methods are already used. Methods taking into account previous predictions and errors that are calculated as a result of data integration to obtain forecasts for obtaining the classification result are investigated. A general overview of classification methods is conducted. Experiments on machine learning algorithms for multimodal data are performed. It is important to consider all the characteristics of metrics and features when using ML algorithms to predict multimodal data. The main advantages and disadvantages of Gradient Boosting, Random Forest, Logistic Regression and XGBoost algorithms are analyzed in the work.","PeriodicalId":325908,"journal":{"name":"Computational Problems of Electrical Engineering","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research into machine learning algorithms for the construction of mathematical models of multimodal data classification problems\",\"authors\":\"N. Boyko\",\"doi\":\"10.23939/jcpee2021.02.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently, machine learning algorithms (ML) are increasingly integrated into everyday life. There are many areas of modern life where classification methods are already used. Methods taking into account previous predictions and errors that are calculated as a result of data integration to obtain forecasts for obtaining the classification result are investigated. A general overview of classification methods is conducted. Experiments on machine learning algorithms for multimodal data are performed. It is important to consider all the characteristics of metrics and features when using ML algorithms to predict multimodal data. The main advantages and disadvantages of Gradient Boosting, Random Forest, Logistic Regression and XGBoost algorithms are analyzed in the work.\",\"PeriodicalId\":325908,\"journal\":{\"name\":\"Computational Problems of Electrical Engineering\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Problems of Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23939/jcpee2021.02.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Problems of Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23939/jcpee2021.02.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Research into machine learning algorithms for the construction of mathematical models of multimodal data classification problems
Currently, machine learning algorithms (ML) are increasingly integrated into everyday life. There are many areas of modern life where classification methods are already used. Methods taking into account previous predictions and errors that are calculated as a result of data integration to obtain forecasts for obtaining the classification result are investigated. A general overview of classification methods is conducted. Experiments on machine learning algorithms for multimodal data are performed. It is important to consider all the characteristics of metrics and features when using ML algorithms to predict multimodal data. The main advantages and disadvantages of Gradient Boosting, Random Forest, Logistic Regression and XGBoost algorithms are analyzed in the work.