利用多频雷达传感器网络识别目标

Jen-Shiun Chen
{"title":"利用多频雷达传感器网络识别目标","authors":"Jen-Shiun Chen","doi":"10.1109/MUSIC.2012.36","DOIUrl":null,"url":null,"abstract":"We present techniques for target identification using resonance-region, multifrequency radar sensor networks. The majority-vote (MV) and sum-distance (SD) nearest-neighbor (NN) algorithms are used. The NN reference set initially contains samples of target features over the possible ranges of target aspect angles. We use a data condensation rule to condense the initial reference set. Simulation results show that the identification error probabilities can be significantly lowered by 1. increasing the number of radar sensors, 2. increasing the number of frequencies, 3. using the complex features instead of the amplitude ones, 4. using the SD algorithm instead of the MV one.","PeriodicalId":260515,"journal":{"name":"2012 Third FTRA International Conference on Mobile, Ubiquitous, and Intelligent Computing","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Target Identification Using Multifrequency Radar Sensor Networks\",\"authors\":\"Jen-Shiun Chen\",\"doi\":\"10.1109/MUSIC.2012.36\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present techniques for target identification using resonance-region, multifrequency radar sensor networks. The majority-vote (MV) and sum-distance (SD) nearest-neighbor (NN) algorithms are used. The NN reference set initially contains samples of target features over the possible ranges of target aspect angles. We use a data condensation rule to condense the initial reference set. Simulation results show that the identification error probabilities can be significantly lowered by 1. increasing the number of radar sensors, 2. increasing the number of frequencies, 3. using the complex features instead of the amplitude ones, 4. using the SD algorithm instead of the MV one.\",\"PeriodicalId\":260515,\"journal\":{\"name\":\"2012 Third FTRA International Conference on Mobile, Ubiquitous, and Intelligent Computing\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Third FTRA International Conference on Mobile, Ubiquitous, and Intelligent Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MUSIC.2012.36\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Third FTRA International Conference on Mobile, Ubiquitous, and Intelligent Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MUSIC.2012.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们介绍了利用共振区域多频雷达传感器网络进行目标识别的技术。我们使用了多数票(MV)和和-距离(SD)近邻(NN)算法。NN 参考集最初包含目标特征样本,涵盖目标纵横角的可能范围。我们使用数据压缩规则来压缩初始参考集。仿真结果表明,1.增加雷达传感器数量;2.增加频率数量;3.使用复合特征而不是振幅特征;4.使用 SD 算法而不是 MV 算法,可以显著降低识别错误概率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Target Identification Using Multifrequency Radar Sensor Networks
We present techniques for target identification using resonance-region, multifrequency radar sensor networks. The majority-vote (MV) and sum-distance (SD) nearest-neighbor (NN) algorithms are used. The NN reference set initially contains samples of target features over the possible ranges of target aspect angles. We use a data condensation rule to condense the initial reference set. Simulation results show that the identification error probabilities can be significantly lowered by 1. increasing the number of radar sensors, 2. increasing the number of frequencies, 3. using the complex features instead of the amplitude ones, 4. using the SD algorithm instead of the MV one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Source-Based Share-Tree Like Multicast Routing in Satellite Constellation Networks An Empirical Case of a Context-Aware Mobile Recommender System in a Banking Environment Generating OWL Ontology from Relational Database Data Overhead Impact of Multipath Routing for Multicast in Wireless Mesh Networks UVote: A Ubiquitous E-voting System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1