{"title":"基于事件驱动的像素阵列访问和复位解码器读出结构的时序特性研究","authors":"D.S. Gorni, G. Deptuch, S. Miryala","doi":"10.1109/prime55000.2022.9816805","DOIUrl":null,"url":null,"abstract":"The large number of data generating sources (data channels) on a single chip requires appropriate techniques to manage a readout from these channels. One of the main methods is sharing a medium of transmission, which requires arbitration to avoid collisions or deadlocks. Existing solutions face several problems such as a dead time, unintended prioritization or metastability. That is why we decided to create a new readout architecture named EDWARD i.e., Event Driven with Access and Reset Decoder. The EDWARD architecture gets rid of the earlier mentioned problems and mitigates the other ones. However, due to the use of logic circuits outside a standard cell library, which are hard to characterize, we were challenged to perform an additional transient analysis to validate the architecture. Here we show a methodology and the results of the simulations. Based on the results obtained we can confirm the functional correctness of the system and plan the optimization of operating conditions in order to achieve better performance. Our goal is to use the EDWARD architecture in the future radiation detectors to be built at Brookhaven National Laboratory.","PeriodicalId":142196,"journal":{"name":"2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of Timing Properties for an Event Driven with Access and Reset Decoder Readout Architecture for a Pixel Array\",\"authors\":\"D.S. Gorni, G. Deptuch, S. Miryala\",\"doi\":\"10.1109/prime55000.2022.9816805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The large number of data generating sources (data channels) on a single chip requires appropriate techniques to manage a readout from these channels. One of the main methods is sharing a medium of transmission, which requires arbitration to avoid collisions or deadlocks. Existing solutions face several problems such as a dead time, unintended prioritization or metastability. That is why we decided to create a new readout architecture named EDWARD i.e., Event Driven with Access and Reset Decoder. The EDWARD architecture gets rid of the earlier mentioned problems and mitigates the other ones. However, due to the use of logic circuits outside a standard cell library, which are hard to characterize, we were challenged to perform an additional transient analysis to validate the architecture. Here we show a methodology and the results of the simulations. Based on the results obtained we can confirm the functional correctness of the system and plan the optimization of operating conditions in order to achieve better performance. Our goal is to use the EDWARD architecture in the future radiation detectors to be built at Brookhaven National Laboratory.\",\"PeriodicalId\":142196,\"journal\":{\"name\":\"2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/prime55000.2022.9816805\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/prime55000.2022.9816805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Investigation of Timing Properties for an Event Driven with Access and Reset Decoder Readout Architecture for a Pixel Array
The large number of data generating sources (data channels) on a single chip requires appropriate techniques to manage a readout from these channels. One of the main methods is sharing a medium of transmission, which requires arbitration to avoid collisions or deadlocks. Existing solutions face several problems such as a dead time, unintended prioritization or metastability. That is why we decided to create a new readout architecture named EDWARD i.e., Event Driven with Access and Reset Decoder. The EDWARD architecture gets rid of the earlier mentioned problems and mitigates the other ones. However, due to the use of logic circuits outside a standard cell library, which are hard to characterize, we were challenged to perform an additional transient analysis to validate the architecture. Here we show a methodology and the results of the simulations. Based on the results obtained we can confirm the functional correctness of the system and plan the optimization of operating conditions in order to achieve better performance. Our goal is to use the EDWARD architecture in the future radiation detectors to be built at Brookhaven National Laboratory.