利用基于遗传模糊规则的系统进行知识提取,提高了可解释性

Rogério Ishibashi, C. Nascimento
{"title":"利用基于遗传模糊规则的系统进行知识提取,提高了可解释性","authors":"Rogério Ishibashi, C. Nascimento","doi":"10.1109/SAMI.2012.6208967","DOIUrl":null,"url":null,"abstract":"In this paper a fuzzy rule-based system is trained to perform a classification task using a genetic algorithm and a fitness function that simultaneously considers the accuracy of the model and its interpretability. Initially a decision tree is created using any tree induction algorithm such as CART, ID3 or C4.5. This tree is then used to generate a fuzzy rule-based system. The parameters of the membership functions are adjusted by the genetic algorithm. As a case study, the proposed method is applied to an appendicitis dataset with 106 instances (input-output pairs), 7 normalized real-valued inputs and 1 binary output.","PeriodicalId":158731,"journal":{"name":"2012 IEEE 10th International Symposium on Applied Machine Intelligence and Informatics (SAMI)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Knowledge extraction using a genetic fuzzy rule-based system with increased interpretability\",\"authors\":\"Rogério Ishibashi, C. Nascimento\",\"doi\":\"10.1109/SAMI.2012.6208967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a fuzzy rule-based system is trained to perform a classification task using a genetic algorithm and a fitness function that simultaneously considers the accuracy of the model and its interpretability. Initially a decision tree is created using any tree induction algorithm such as CART, ID3 or C4.5. This tree is then used to generate a fuzzy rule-based system. The parameters of the membership functions are adjusted by the genetic algorithm. As a case study, the proposed method is applied to an appendicitis dataset with 106 instances (input-output pairs), 7 normalized real-valued inputs and 1 binary output.\",\"PeriodicalId\":158731,\"journal\":{\"name\":\"2012 IEEE 10th International Symposium on Applied Machine Intelligence and Informatics (SAMI)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 10th International Symposium on Applied Machine Intelligence and Informatics (SAMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAMI.2012.6208967\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 10th International Symposium on Applied Machine Intelligence and Informatics (SAMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMI.2012.6208967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文利用遗传算法和同时考虑模型准确性和可解释性的适应度函数训练了一个基于模糊规则的系统来执行分类任务。最初,使用任何树归纳算法(如CART、ID3或C4.5)创建决策树。然后使用这棵树来生成一个模糊的基于规则的系统。通过遗传算法对隶属函数的参数进行调整。作为案例研究,将该方法应用于具有106个实例(输入-输出对)、7个归一化实值输入和1个二进制输出的阑尾炎数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Knowledge extraction using a genetic fuzzy rule-based system with increased interpretability
In this paper a fuzzy rule-based system is trained to perform a classification task using a genetic algorithm and a fitness function that simultaneously considers the accuracy of the model and its interpretability. Initially a decision tree is created using any tree induction algorithm such as CART, ID3 or C4.5. This tree is then used to generate a fuzzy rule-based system. The parameters of the membership functions are adjusted by the genetic algorithm. As a case study, the proposed method is applied to an appendicitis dataset with 106 instances (input-output pairs), 7 normalized real-valued inputs and 1 binary output.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Preparing databases for network traffic monitoring Name service redundancy in robot technology middleware Classification of LHC beam loss spikes using Support Vector Machines Extraction of web discussion texts for opinion analysis MonAMI platform, trials and results
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1