{"title":"混合边界表示的改进及其混合体补全","authors":"Yang Song, E. Cohen","doi":"10.5802/smai-jcm.49","DOIUrl":null,"url":null,"abstract":"With the increasing need for volumetric B-spline representations and the lack of methodologies for creating semi-structured volumetric B-spline representations from B-spline Boundary Representations (B-Rep), hybrid approaches combining semi-structured volumetric B-splines and unstructured Bézier tetrahedra have been introduced, including one that transforms a trimmed B-spline B-Rep first to an untrimmed Hybrid B-Rep (HBRep) and then to a Hybrid Volume Representation (HV-Rep). Generally, the effect of h-refinement has not been considered over B-spline hybrid representations. Standard refinement approches to tensor product B-splines and subdivision of Bézier triangles and tetrahedra must be adapted to this representation. In this paper, we analyze possible types of h-refinement of the HV-Rep. The revised and trim basis functions for HBand HV-rep depend on a partition of knot intervals. Therefore, a naive h-refinement can change basis functions in unexpected ways. This paper analyzes the the effect of h-refinement in reducing error as well. Different h-refinement strategies are discussed. We demonstrate their differences and compare their respective consequential trade-offs. Recommendations are also made for different use cases. 2010 Mathematics Subject Classification. 65D17.","PeriodicalId":376888,"journal":{"name":"The SMAI journal of computational mathematics","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Refinement for a Hybrid Boundary Representation and its Hybrid Volume Completion\",\"authors\":\"Yang Song, E. Cohen\",\"doi\":\"10.5802/smai-jcm.49\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the increasing need for volumetric B-spline representations and the lack of methodologies for creating semi-structured volumetric B-spline representations from B-spline Boundary Representations (B-Rep), hybrid approaches combining semi-structured volumetric B-splines and unstructured Bézier tetrahedra have been introduced, including one that transforms a trimmed B-spline B-Rep first to an untrimmed Hybrid B-Rep (HBRep) and then to a Hybrid Volume Representation (HV-Rep). Generally, the effect of h-refinement has not been considered over B-spline hybrid representations. Standard refinement approches to tensor product B-splines and subdivision of Bézier triangles and tetrahedra must be adapted to this representation. In this paper, we analyze possible types of h-refinement of the HV-Rep. The revised and trim basis functions for HBand HV-rep depend on a partition of knot intervals. Therefore, a naive h-refinement can change basis functions in unexpected ways. This paper analyzes the the effect of h-refinement in reducing error as well. Different h-refinement strategies are discussed. We demonstrate their differences and compare their respective consequential trade-offs. Recommendations are also made for different use cases. 2010 Mathematics Subject Classification. 65D17.\",\"PeriodicalId\":376888,\"journal\":{\"name\":\"The SMAI journal of computational mathematics\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The SMAI journal of computational mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/smai-jcm.49\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The SMAI journal of computational mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/smai-jcm.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Refinement for a Hybrid Boundary Representation and its Hybrid Volume Completion
With the increasing need for volumetric B-spline representations and the lack of methodologies for creating semi-structured volumetric B-spline representations from B-spline Boundary Representations (B-Rep), hybrid approaches combining semi-structured volumetric B-splines and unstructured Bézier tetrahedra have been introduced, including one that transforms a trimmed B-spline B-Rep first to an untrimmed Hybrid B-Rep (HBRep) and then to a Hybrid Volume Representation (HV-Rep). Generally, the effect of h-refinement has not been considered over B-spline hybrid representations. Standard refinement approches to tensor product B-splines and subdivision of Bézier triangles and tetrahedra must be adapted to this representation. In this paper, we analyze possible types of h-refinement of the HV-Rep. The revised and trim basis functions for HBand HV-rep depend on a partition of knot intervals. Therefore, a naive h-refinement can change basis functions in unexpected ways. This paper analyzes the the effect of h-refinement in reducing error as well. Different h-refinement strategies are discussed. We demonstrate their differences and compare their respective consequential trade-offs. Recommendations are also made for different use cases. 2010 Mathematics Subject Classification. 65D17.