{"title":"一种基于深度稀疏二值自编码器和主成分分析的电机轴承故障诊断方法","authors":"Yunzhong Xia, Wanxiang Li, Yangyang Gao","doi":"10.1784/insi.2023.65.4.217","DOIUrl":null,"url":null,"abstract":"Due to the complex and variable operating conditions of motor bearings, it is difficult for a deep autoencoder (DAE) to effectively extract valuable fault features from the raw vibration signal, which makes it difficult to identify faults. To enhance the extraction ability of the deep\n features of a network model and improve the accuracy of fault identification, this paper proposes a fault diagnosis method for motor bearings based on a deep sparse binary autoencoder and principal component analysis (PCA). Firstly, a deep sparse binary autoencoder is constructed by combining\n an autoencoder with a binary processor to improve the ability to extract deep features. Secondly, principal component analysis is used to fuse high-dimensional features to reduce dimensionality and eliminate redundant information existing in the deep features. Finally, fused deep features\n are input into a Softmax classifier to train the intelligent fault diagnosis model. The proposed method is validated on a rolling bearing dataset. Compared with existing methods, the experimental results show that this method can effectively extract robust features from the original vibration\n signals and improve the fault diagnosis results.","PeriodicalId":344397,"journal":{"name":"Insight - Non-Destructive Testing and Condition Monitoring","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel motor bearing fault diagnosis method based on a deep sparse binary autoencoder and principal component analysis\",\"authors\":\"Yunzhong Xia, Wanxiang Li, Yangyang Gao\",\"doi\":\"10.1784/insi.2023.65.4.217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the complex and variable operating conditions of motor bearings, it is difficult for a deep autoencoder (DAE) to effectively extract valuable fault features from the raw vibration signal, which makes it difficult to identify faults. To enhance the extraction ability of the deep\\n features of a network model and improve the accuracy of fault identification, this paper proposes a fault diagnosis method for motor bearings based on a deep sparse binary autoencoder and principal component analysis (PCA). Firstly, a deep sparse binary autoencoder is constructed by combining\\n an autoencoder with a binary processor to improve the ability to extract deep features. Secondly, principal component analysis is used to fuse high-dimensional features to reduce dimensionality and eliminate redundant information existing in the deep features. Finally, fused deep features\\n are input into a Softmax classifier to train the intelligent fault diagnosis model. The proposed method is validated on a rolling bearing dataset. Compared with existing methods, the experimental results show that this method can effectively extract robust features from the original vibration\\n signals and improve the fault diagnosis results.\",\"PeriodicalId\":344397,\"journal\":{\"name\":\"Insight - Non-Destructive Testing and Condition Monitoring\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insight - Non-Destructive Testing and Condition Monitoring\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1784/insi.2023.65.4.217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insight - Non-Destructive Testing and Condition Monitoring","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1784/insi.2023.65.4.217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A novel motor bearing fault diagnosis method based on a deep sparse binary autoencoder and principal component analysis
Due to the complex and variable operating conditions of motor bearings, it is difficult for a deep autoencoder (DAE) to effectively extract valuable fault features from the raw vibration signal, which makes it difficult to identify faults. To enhance the extraction ability of the deep
features of a network model and improve the accuracy of fault identification, this paper proposes a fault diagnosis method for motor bearings based on a deep sparse binary autoencoder and principal component analysis (PCA). Firstly, a deep sparse binary autoencoder is constructed by combining
an autoencoder with a binary processor to improve the ability to extract deep features. Secondly, principal component analysis is used to fuse high-dimensional features to reduce dimensionality and eliminate redundant information existing in the deep features. Finally, fused deep features
are input into a Softmax classifier to train the intelligent fault diagnosis model. The proposed method is validated on a rolling bearing dataset. Compared with existing methods, the experimental results show that this method can effectively extract robust features from the original vibration
signals and improve the fault diagnosis results.