超大规模大规模MIMO的低复杂度期望传播检测器

Zhinan Sun, Xumin Pu, Shihai Shao, Shi Jin, Qianbin Chen
{"title":"超大规模大规模MIMO的低复杂度期望传播检测器","authors":"Zhinan Sun, Xumin Pu, Shihai Shao, Shi Jin, Qianbin Chen","doi":"10.1109/iccc52777.2021.9580373","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a low-complexity expectation propagation (EP) detector for extra-large scale massive multiple-input multiple-output (MIMO) systems. EP achieves the near-optimal performance in high-dimensional MIMO systems but suffers from the inevitable cost of computational complexity. In each iteration procedure of EP algorithm, matrix inversion is the main computational burden, which is the key challenge of the practical implementation of EP detectors. In this work, we use polynomial expansion (PE) to approximate matrix inverse, which reduces the computational cost of matrix inverse in each EP iteration. A subarray architecture is considered in our scenario to fit extra-large scale antenna array. Numerical analysis shows that the proposed PE-EP detector has extremely low complexity for extra-large scale antenna array and achieves performance similar to MMSE and original EP, which ensures enhanced performance and complexity trade-off.","PeriodicalId":425118,"journal":{"name":"2021 IEEE/CIC International Conference on Communications in China (ICCC)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Low Complexity Expectation Propagation Detector for Extra-Large Scale Massive MIMO\",\"authors\":\"Zhinan Sun, Xumin Pu, Shihai Shao, Shi Jin, Qianbin Chen\",\"doi\":\"10.1109/iccc52777.2021.9580373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a low-complexity expectation propagation (EP) detector for extra-large scale massive multiple-input multiple-output (MIMO) systems. EP achieves the near-optimal performance in high-dimensional MIMO systems but suffers from the inevitable cost of computational complexity. In each iteration procedure of EP algorithm, matrix inversion is the main computational burden, which is the key challenge of the practical implementation of EP detectors. In this work, we use polynomial expansion (PE) to approximate matrix inverse, which reduces the computational cost of matrix inverse in each EP iteration. A subarray architecture is considered in our scenario to fit extra-large scale antenna array. Numerical analysis shows that the proposed PE-EP detector has extremely low complexity for extra-large scale antenna array and achieves performance similar to MMSE and original EP, which ensures enhanced performance and complexity trade-off.\",\"PeriodicalId\":425118,\"journal\":{\"name\":\"2021 IEEE/CIC International Conference on Communications in China (ICCC)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/CIC International Conference on Communications in China (ICCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iccc52777.2021.9580373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CIC International Conference on Communications in China (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iccc52777.2021.9580373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种适用于超大规模海量多输入多输出系统的低复杂度期望传播检测器(EP)。EP在高维MIMO系统中实现了近乎最优的性能,但其不可避免地要付出计算复杂度的代价。在EP算法的每次迭代过程中,矩阵反演是主要的计算负担,这是EP检测器实际实现的关键挑战。在这项工作中,我们使用多项式展开(PE)来近似矩阵逆,从而减少了每次EP迭代中矩阵逆的计算成本。在我们的方案中考虑了一个子阵列架构,以适应超大规模的天线阵列。数值分析表明,本文提出的PE-EP检测器在超大规模天线阵列中具有极低的复杂度,且性能与MMSE和原始EP相当,在保证性能和复杂度折衷的前提下得到了提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Low Complexity Expectation Propagation Detector for Extra-Large Scale Massive MIMO
In this paper, we propose a low-complexity expectation propagation (EP) detector for extra-large scale massive multiple-input multiple-output (MIMO) systems. EP achieves the near-optimal performance in high-dimensional MIMO systems but suffers from the inevitable cost of computational complexity. In each iteration procedure of EP algorithm, matrix inversion is the main computational burden, which is the key challenge of the practical implementation of EP detectors. In this work, we use polynomial expansion (PE) to approximate matrix inverse, which reduces the computational cost of matrix inverse in each EP iteration. A subarray architecture is considered in our scenario to fit extra-large scale antenna array. Numerical analysis shows that the proposed PE-EP detector has extremely low complexity for extra-large scale antenna array and achieves performance similar to MMSE and original EP, which ensures enhanced performance and complexity trade-off.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Group-oriented Handover Authentication Scheme in MEC-Enabled 5G Networks Joint Task Secure Offloading and Resource Allocation for Multi-MEC Server to Improve User QoE Dueling-DDQN Based Virtual Machine Placement Algorithm for Cloud Computing Systems Predictive Beam Tracking with Cooperative Sensing for Vehicle-to-Infrastructure Communications Age-aware Communication Strategy in Federated Learning with Energy Harvesting Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1