Qihang Zhao, Bin Zhou, Ben Wang, Jin Lu, Luxiao Zhu
{"title":"基于RA-UNet的遥感图像分类研究","authors":"Qihang Zhao, Bin Zhou, Ben Wang, Jin Lu, Luxiao Zhu","doi":"10.1117/12.2667743","DOIUrl":null,"url":null,"abstract":"With the development of satellite remote sensing technology, the quality and quantity of remote sensing images are constantly improved. Remote sensing feature classification is also playing an increasingly important role in urban planning, resource exploration and other fields. In the early stage of remote sensing feature classification, machine learning algorithms such as SVM and K-means are mainly used. Nowadays, with the expansion of deep learning, various kinds of research in the computer vision field emerge in an endless manner. Remote sensing images are also mostly classified by different neural networks. According to the characteristics and advantages of U-NET, channel attention mechanism, ResNet, large convolution kernel and structural reparameterization, this paper proposes a network structure called RA-UNET. This paper uses the remote sensing ground object classification dataset LoveDA to conduct experiments. The results show that the network classification effect of this paper is better, with mIoU reaching 59.4% and mPA reaching 72.6%. And use the network in this paper and the four mainstream neural networks of FCN, SegNet, PSPNet and UNet to conduct comparative experiments. The comparative experimental results show that the classification effect of the network in this paper is better than the above four mainstream neural networks.","PeriodicalId":345723,"journal":{"name":"Fifth International Conference on Computer Information Science and Artificial Intelligence","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on remote sensing image classification based on RA-UNet\",\"authors\":\"Qihang Zhao, Bin Zhou, Ben Wang, Jin Lu, Luxiao Zhu\",\"doi\":\"10.1117/12.2667743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of satellite remote sensing technology, the quality and quantity of remote sensing images are constantly improved. Remote sensing feature classification is also playing an increasingly important role in urban planning, resource exploration and other fields. In the early stage of remote sensing feature classification, machine learning algorithms such as SVM and K-means are mainly used. Nowadays, with the expansion of deep learning, various kinds of research in the computer vision field emerge in an endless manner. Remote sensing images are also mostly classified by different neural networks. According to the characteristics and advantages of U-NET, channel attention mechanism, ResNet, large convolution kernel and structural reparameterization, this paper proposes a network structure called RA-UNET. This paper uses the remote sensing ground object classification dataset LoveDA to conduct experiments. The results show that the network classification effect of this paper is better, with mIoU reaching 59.4% and mPA reaching 72.6%. And use the network in this paper and the four mainstream neural networks of FCN, SegNet, PSPNet and UNet to conduct comparative experiments. The comparative experimental results show that the classification effect of the network in this paper is better than the above four mainstream neural networks.\",\"PeriodicalId\":345723,\"journal\":{\"name\":\"Fifth International Conference on Computer Information Science and Artificial Intelligence\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fifth International Conference on Computer Information Science and Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2667743\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth International Conference on Computer Information Science and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2667743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Research on remote sensing image classification based on RA-UNet
With the development of satellite remote sensing technology, the quality and quantity of remote sensing images are constantly improved. Remote sensing feature classification is also playing an increasingly important role in urban planning, resource exploration and other fields. In the early stage of remote sensing feature classification, machine learning algorithms such as SVM and K-means are mainly used. Nowadays, with the expansion of deep learning, various kinds of research in the computer vision field emerge in an endless manner. Remote sensing images are also mostly classified by different neural networks. According to the characteristics and advantages of U-NET, channel attention mechanism, ResNet, large convolution kernel and structural reparameterization, this paper proposes a network structure called RA-UNET. This paper uses the remote sensing ground object classification dataset LoveDA to conduct experiments. The results show that the network classification effect of this paper is better, with mIoU reaching 59.4% and mPA reaching 72.6%. And use the network in this paper and the four mainstream neural networks of FCN, SegNet, PSPNet and UNet to conduct comparative experiments. The comparative experimental results show that the classification effect of the network in this paper is better than the above four mainstream neural networks.