一个月的生产新闻推荐系统的生命

A. Said, Jimmy J. Lin, Alejandro Bellogín, A. D. Vries
{"title":"一个月的生产新闻推荐系统的生命","authors":"A. Said, Jimmy J. Lin, Alejandro Bellogín, A. D. Vries","doi":"10.1145/2513150.2513159","DOIUrl":null,"url":null,"abstract":"During the last decade, recommender systems have become a ubiquitous feature in the online world. Research on systems and algorithms in this area has flourished, leading to novel techniques for personalization and recommendation. The evaluation of recommender systems, however, has not seen similar progress---techniques have changed little since the advent of recommender systems, when evaluation methodologies were \"borrowed\" from related research areas. As an effort to move evaluation methodology forward, this paper describes a production recommender system infrastructure that allows research systems to be evaluated in situ, by real-world metrics such as user clickthrough. We present an analysis of one month of interactions with this infrastructure and share our findings.","PeriodicalId":436800,"journal":{"name":"LivingLab '13","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"A month in the life of a production news recommender system\",\"authors\":\"A. Said, Jimmy J. Lin, Alejandro Bellogín, A. D. Vries\",\"doi\":\"10.1145/2513150.2513159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During the last decade, recommender systems have become a ubiquitous feature in the online world. Research on systems and algorithms in this area has flourished, leading to novel techniques for personalization and recommendation. The evaluation of recommender systems, however, has not seen similar progress---techniques have changed little since the advent of recommender systems, when evaluation methodologies were \\\"borrowed\\\" from related research areas. As an effort to move evaluation methodology forward, this paper describes a production recommender system infrastructure that allows research systems to be evaluated in situ, by real-world metrics such as user clickthrough. We present an analysis of one month of interactions with this infrastructure and share our findings.\",\"PeriodicalId\":436800,\"journal\":{\"name\":\"LivingLab '13\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"LivingLab '13\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2513150.2513159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"LivingLab '13","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2513150.2513159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

在过去的十年中,推荐系统已经成为网络世界中无处不在的功能。该领域的系统和算法研究蓬勃发展,导致了个性化和推荐的新技术。然而,对推荐系统的评估并没有看到类似的进展——自从推荐系统出现以来,技术几乎没有变化,当时的评估方法是从相关研究领域“借用”的。为了推动评估方法向前发展,本文描述了一个产品推荐系统基础设施,该基础设施允许通过用户点击等现实世界指标对研究系统进行现场评估。我们对一个月来与该基础设施的互动进行了分析,并分享了我们的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A month in the life of a production news recommender system
During the last decade, recommender systems have become a ubiquitous feature in the online world. Research on systems and algorithms in this area has flourished, leading to novel techniques for personalization and recommendation. The evaluation of recommender systems, however, has not seen similar progress---techniques have changed little since the advent of recommender systems, when evaluation methodologies were "borrowed" from related research areas. As an effort to move evaluation methodology forward, this paper describes a production recommender system infrastructure that allows research systems to be evaluated in situ, by real-world metrics such as user clickthrough. We present an analysis of one month of interactions with this infrastructure and share our findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Using CrowdLogger for in situ information retrieval system evaluation Online metrics for web search relevance Lerot: an online learning to rank framework Evaluation for operational IR applications: generalizability and automation Factors affecting conditions of trust in participant recruiting and retention: a position paper
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1