更好地理解Web搜索中的查询重构行为

Jia Chen, Jiaxin Mao, Yiqun Liu, Fan Zhang, M. Zhang, Shaoping Ma
{"title":"更好地理解Web搜索中的查询重构行为","authors":"Jia Chen, Jiaxin Mao, Yiqun Liu, Fan Zhang, M. Zhang, Shaoping Ma","doi":"10.1145/3442381.3450127","DOIUrl":null,"url":null,"abstract":"As queries submitted by users directly affect search experiences, how to organize queries has always been a research focus in Web search studies. While search request becomes complex and exploratory, many search sessions contain more than a single query thus reformulation becomes a necessity. To help users better formulate their queries in these complex search tasks, modern search engines usually provide a series of reformulation entries on search engine result pages (SERPs), i.e., query suggestions and related entities. However, few existing work have thoroughly studied why and how users perform query reformulations in these heterogeneous interfaces. Therefore, whether search engines provide sufficient assistance for users in reformulating queries remains under-investigated. To shed light on this research question, we conducted a field study to analyze fine-grained user reformulation behaviors including reformulation type, entry, reason, and the inspiration source with various search intents. Different from existing efforts that rely on external assessors to make judgments, in the field study we collect both implicit behavior signals and explicit user feedback information. Analysis results demonstrate that query reformulation behavior in Web search varies with the type of search tasks. We also found that the current query suggestion/related query recommendations provided by search engines do not offer enough help for users in complex search tasks. Based on the findings in our field study, we design a supervised learning framework to predict: 1) the reason behind each query reformulation, and 2) how users organize the reformulated query, both of which are novel challenges in this domain. This work provides insight into complex query reformulation behavior in Web search as well as the guidance for designing better query suggestion techniques in search engines.","PeriodicalId":106672,"journal":{"name":"Proceedings of the Web Conference 2021","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Towards a Better Understanding of Query Reformulation Behavior in Web Search\",\"authors\":\"Jia Chen, Jiaxin Mao, Yiqun Liu, Fan Zhang, M. Zhang, Shaoping Ma\",\"doi\":\"10.1145/3442381.3450127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As queries submitted by users directly affect search experiences, how to organize queries has always been a research focus in Web search studies. While search request becomes complex and exploratory, many search sessions contain more than a single query thus reformulation becomes a necessity. To help users better formulate their queries in these complex search tasks, modern search engines usually provide a series of reformulation entries on search engine result pages (SERPs), i.e., query suggestions and related entities. However, few existing work have thoroughly studied why and how users perform query reformulations in these heterogeneous interfaces. Therefore, whether search engines provide sufficient assistance for users in reformulating queries remains under-investigated. To shed light on this research question, we conducted a field study to analyze fine-grained user reformulation behaviors including reformulation type, entry, reason, and the inspiration source with various search intents. Different from existing efforts that rely on external assessors to make judgments, in the field study we collect both implicit behavior signals and explicit user feedback information. Analysis results demonstrate that query reformulation behavior in Web search varies with the type of search tasks. We also found that the current query suggestion/related query recommendations provided by search engines do not offer enough help for users in complex search tasks. Based on the findings in our field study, we design a supervised learning framework to predict: 1) the reason behind each query reformulation, and 2) how users organize the reformulated query, both of which are novel challenges in this domain. This work provides insight into complex query reformulation behavior in Web search as well as the guidance for designing better query suggestion techniques in search engines.\",\"PeriodicalId\":106672,\"journal\":{\"name\":\"Proceedings of the Web Conference 2021\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Web Conference 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3442381.3450127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Web Conference 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3442381.3450127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

由于用户提交的查询直接影响到搜索体验,如何组织查询一直是Web搜索研究的热点。当搜索请求变得复杂和探索性时,许多搜索会话包含不止一个查询,因此需要重新表述。为了帮助用户在这些复杂的搜索任务中更好地制定查询,现代搜索引擎通常在搜索引擎结果页(serp)上提供一系列重新制定的条目,即查询建议和相关实体。然而,很少有现有的工作深入研究用户为什么以及如何在这些异构接口中执行查询重新表述。因此,搜索引擎是否为用户重新表述查询提供了足够的帮助仍有待调查。为了阐明这一研究问题,我们进行了一项实地研究,分析了细粒度的用户重构行为,包括不同搜索意图下的重构类型、入口、原因和灵感来源。与现有的依赖于外部评估者做出判断的工作不同,在实地研究中,我们收集了隐性行为信号和显性用户反馈信息。分析结果表明,Web搜索中的查询重构行为随搜索任务类型的不同而不同。我们还发现,目前搜索引擎提供的查询建议/相关查询推荐并没有为用户在复杂的搜索任务中提供足够的帮助。基于我们的实地研究结果,我们设计了一个监督学习框架来预测:1)每个查询重新表述背后的原因,以及2)用户如何组织重新表述的查询,这两者都是该领域的新挑战。这项工作提供了对Web搜索中复杂查询重新表述行为的洞察,并为在搜索引擎中设计更好的查询建议技术提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards a Better Understanding of Query Reformulation Behavior in Web Search
As queries submitted by users directly affect search experiences, how to organize queries has always been a research focus in Web search studies. While search request becomes complex and exploratory, many search sessions contain more than a single query thus reformulation becomes a necessity. To help users better formulate their queries in these complex search tasks, modern search engines usually provide a series of reformulation entries on search engine result pages (SERPs), i.e., query suggestions and related entities. However, few existing work have thoroughly studied why and how users perform query reformulations in these heterogeneous interfaces. Therefore, whether search engines provide sufficient assistance for users in reformulating queries remains under-investigated. To shed light on this research question, we conducted a field study to analyze fine-grained user reformulation behaviors including reformulation type, entry, reason, and the inspiration source with various search intents. Different from existing efforts that rely on external assessors to make judgments, in the field study we collect both implicit behavior signals and explicit user feedback information. Analysis results demonstrate that query reformulation behavior in Web search varies with the type of search tasks. We also found that the current query suggestion/related query recommendations provided by search engines do not offer enough help for users in complex search tasks. Based on the findings in our field study, we design a supervised learning framework to predict: 1) the reason behind each query reformulation, and 2) how users organize the reformulated query, both of which are novel challenges in this domain. This work provides insight into complex query reformulation behavior in Web search as well as the guidance for designing better query suggestion techniques in search engines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
WiseTrans: Adaptive Transport Protocol Selection for Mobile Web Service Outlier-Resilient Web Service QoS Prediction Not All Features Are Equal: Discovering Essential Features for Preserving Prediction Privacy Unsupervised Lifelong Learning with Curricula The Structure of Toxic Conversations on Twitter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1