超声图像增强的多尺度非线性扩散和冲击滤波

Fan Zhang, Y. Yoo, Yongmin Kim, Lichen Zhang, L. M. Koh
{"title":"超声图像增强的多尺度非线性扩散和冲击滤波","authors":"Fan Zhang, Y. Yoo, Yongmin Kim, Lichen Zhang, L. M. Koh","doi":"10.1109/CVPR.2006.203","DOIUrl":null,"url":null,"abstract":"A new noise reduction and edge enhancement method, i.e., Laplacian pyramid-based nonlinear diffusion and shock filter (LPNDSF), is proposed for medical ultrasound imaging. In the proposed LPNDSF, a coupled nonlinear diffusion and shock filter process is applied in Laplacian pyramid domain of an image, to remove speckle and enhance edges simultaneously. The performance of the proposed method was evaluated on a phantom and a real ultrasound image. In the phantom study, we obtained an average gain of 0.55 and 1.11 in contrast-to-noise ratio compared to the speckle reducing anisotropic diffusion (SRAD) and nonlinear coherent diffusion (NCD), respectively. Also, the proposed LPNDSF showed clearer boundaries on the phantom and the real ultrasound image. These preliminary results indicate that the proposed LPNDSF can effectively reduce speckle noise while enhancing image edges for retaining subtle features.","PeriodicalId":421737,"journal":{"name":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Multiscale Nonlinear Diffusion and Shock Filter for Ultrasound Image Enhancement\",\"authors\":\"Fan Zhang, Y. Yoo, Yongmin Kim, Lichen Zhang, L. M. Koh\",\"doi\":\"10.1109/CVPR.2006.203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new noise reduction and edge enhancement method, i.e., Laplacian pyramid-based nonlinear diffusion and shock filter (LPNDSF), is proposed for medical ultrasound imaging. In the proposed LPNDSF, a coupled nonlinear diffusion and shock filter process is applied in Laplacian pyramid domain of an image, to remove speckle and enhance edges simultaneously. The performance of the proposed method was evaluated on a phantom and a real ultrasound image. In the phantom study, we obtained an average gain of 0.55 and 1.11 in contrast-to-noise ratio compared to the speckle reducing anisotropic diffusion (SRAD) and nonlinear coherent diffusion (NCD), respectively. Also, the proposed LPNDSF showed clearer boundaries on the phantom and the real ultrasound image. These preliminary results indicate that the proposed LPNDSF can effectively reduce speckle noise while enhancing image edges for retaining subtle features.\",\"PeriodicalId\":421737,\"journal\":{\"name\":\"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2006.203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2006.203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

提出了一种新的医学超声成像降噪和边缘增强方法,即基于拉普拉斯金字塔的非线性扩散和冲击滤波(LPNDSF)。在该算法中,在图像的拉普拉斯金字塔域采用非线性扩散和冲击耦合滤波处理,同时去除斑点和增强边缘。在仿真和真实超声图像上对该方法的性能进行了评价。在模体研究中,与散斑减少各向异性扩散(SRAD)和非线性相干扩散(NCD)相比,我们分别获得了0.55和1.11的平均增益。此外,所提出的LPNDSF在虚影和真实超声图像上的边界更清晰。这些初步结果表明,所提出的LPNDSF可以有效地降低散斑噪声,同时增强图像边缘以保留细微特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiscale Nonlinear Diffusion and Shock Filter for Ultrasound Image Enhancement
A new noise reduction and edge enhancement method, i.e., Laplacian pyramid-based nonlinear diffusion and shock filter (LPNDSF), is proposed for medical ultrasound imaging. In the proposed LPNDSF, a coupled nonlinear diffusion and shock filter process is applied in Laplacian pyramid domain of an image, to remove speckle and enhance edges simultaneously. The performance of the proposed method was evaluated on a phantom and a real ultrasound image. In the phantom study, we obtained an average gain of 0.55 and 1.11 in contrast-to-noise ratio compared to the speckle reducing anisotropic diffusion (SRAD) and nonlinear coherent diffusion (NCD), respectively. Also, the proposed LPNDSF showed clearer boundaries on the phantom and the real ultrasound image. These preliminary results indicate that the proposed LPNDSF can effectively reduce speckle noise while enhancing image edges for retaining subtle features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Dynamic Bayesian Network Model for Autonomous 3D Reconstruction from a Single Indoor Image Efficient Maximally Stable Extremal Region (MSER) Tracking Transformation invariant component analysis for binary images Region-Tree Based Stereo Using Dynamic Programming Optimization Probabilistic 3D Polyp Detection in CT Images: The Role of Sample Alignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1