Fan Zhang, Y. Yoo, Yongmin Kim, Lichen Zhang, L. M. Koh
{"title":"超声图像增强的多尺度非线性扩散和冲击滤波","authors":"Fan Zhang, Y. Yoo, Yongmin Kim, Lichen Zhang, L. M. Koh","doi":"10.1109/CVPR.2006.203","DOIUrl":null,"url":null,"abstract":"A new noise reduction and edge enhancement method, i.e., Laplacian pyramid-based nonlinear diffusion and shock filter (LPNDSF), is proposed for medical ultrasound imaging. In the proposed LPNDSF, a coupled nonlinear diffusion and shock filter process is applied in Laplacian pyramid domain of an image, to remove speckle and enhance edges simultaneously. The performance of the proposed method was evaluated on a phantom and a real ultrasound image. In the phantom study, we obtained an average gain of 0.55 and 1.11 in contrast-to-noise ratio compared to the speckle reducing anisotropic diffusion (SRAD) and nonlinear coherent diffusion (NCD), respectively. Also, the proposed LPNDSF showed clearer boundaries on the phantom and the real ultrasound image. These preliminary results indicate that the proposed LPNDSF can effectively reduce speckle noise while enhancing image edges for retaining subtle features.","PeriodicalId":421737,"journal":{"name":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Multiscale Nonlinear Diffusion and Shock Filter for Ultrasound Image Enhancement\",\"authors\":\"Fan Zhang, Y. Yoo, Yongmin Kim, Lichen Zhang, L. M. Koh\",\"doi\":\"10.1109/CVPR.2006.203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new noise reduction and edge enhancement method, i.e., Laplacian pyramid-based nonlinear diffusion and shock filter (LPNDSF), is proposed for medical ultrasound imaging. In the proposed LPNDSF, a coupled nonlinear diffusion and shock filter process is applied in Laplacian pyramid domain of an image, to remove speckle and enhance edges simultaneously. The performance of the proposed method was evaluated on a phantom and a real ultrasound image. In the phantom study, we obtained an average gain of 0.55 and 1.11 in contrast-to-noise ratio compared to the speckle reducing anisotropic diffusion (SRAD) and nonlinear coherent diffusion (NCD), respectively. Also, the proposed LPNDSF showed clearer boundaries on the phantom and the real ultrasound image. These preliminary results indicate that the proposed LPNDSF can effectively reduce speckle noise while enhancing image edges for retaining subtle features.\",\"PeriodicalId\":421737,\"journal\":{\"name\":\"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2006.203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2006.203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multiscale Nonlinear Diffusion and Shock Filter for Ultrasound Image Enhancement
A new noise reduction and edge enhancement method, i.e., Laplacian pyramid-based nonlinear diffusion and shock filter (LPNDSF), is proposed for medical ultrasound imaging. In the proposed LPNDSF, a coupled nonlinear diffusion and shock filter process is applied in Laplacian pyramid domain of an image, to remove speckle and enhance edges simultaneously. The performance of the proposed method was evaluated on a phantom and a real ultrasound image. In the phantom study, we obtained an average gain of 0.55 and 1.11 in contrast-to-noise ratio compared to the speckle reducing anisotropic diffusion (SRAD) and nonlinear coherent diffusion (NCD), respectively. Also, the proposed LPNDSF showed clearer boundaries on the phantom and the real ultrasound image. These preliminary results indicate that the proposed LPNDSF can effectively reduce speckle noise while enhancing image edges for retaining subtle features.