基于深度强化学习的有限缓冲LEO卫星网络SAR图像预处理算法

Tae-Yoon Kim, Kyeongrok Kim, Jae-Hyun Kim
{"title":"基于深度强化学习的有限缓冲LEO卫星网络SAR图像预处理算法","authors":"Tae-Yoon Kim, Kyeongrok Kim, Jae-Hyun Kim","doi":"10.1109/ICTC55196.2022.9952926","DOIUrl":null,"url":null,"abstract":"As space technology advances, launching low Earth orbit (LEO) satellites become easier and LEO satellites are being used in various fields. In particular, LEO synthetic aperture radar (SAR) system is in the spotlight with many advantages, e.g., regardless of weather condition, 24 hour operation. SAR system can be used in various fields such as object detection and disaster observation. However, SAR image has speckling noise, so image pre-processing must be required. There are many researches on the SAR image processing, however, few publications are considering a buffer status. Therefore, in this paper, we suggest the optimal SAR image pre-processing in LEO SAR satellites and a ground station with finite buffer based on deep reinforcement learning (DRL). As a result of DRL simulation, while changing the buffer size of the LEO SAR satellites, efficiency of buffer was improved by selecting the optimal filter size according to the state of the buffer.","PeriodicalId":441404,"journal":{"name":"2022 13th International Conference on Information and Communication Technology Convergence (ICTC)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Reinforcement Learning based SAR Image Pre-Processing Algorithm with Finite Buffer LEO Satellite Networks\",\"authors\":\"Tae-Yoon Kim, Kyeongrok Kim, Jae-Hyun Kim\",\"doi\":\"10.1109/ICTC55196.2022.9952926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As space technology advances, launching low Earth orbit (LEO) satellites become easier and LEO satellites are being used in various fields. In particular, LEO synthetic aperture radar (SAR) system is in the spotlight with many advantages, e.g., regardless of weather condition, 24 hour operation. SAR system can be used in various fields such as object detection and disaster observation. However, SAR image has speckling noise, so image pre-processing must be required. There are many researches on the SAR image processing, however, few publications are considering a buffer status. Therefore, in this paper, we suggest the optimal SAR image pre-processing in LEO SAR satellites and a ground station with finite buffer based on deep reinforcement learning (DRL). As a result of DRL simulation, while changing the buffer size of the LEO SAR satellites, efficiency of buffer was improved by selecting the optimal filter size according to the state of the buffer.\",\"PeriodicalId\":441404,\"journal\":{\"name\":\"2022 13th International Conference on Information and Communication Technology Convergence (ICTC)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 13th International Conference on Information and Communication Technology Convergence (ICTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTC55196.2022.9952926\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 13th International Conference on Information and Communication Technology Convergence (ICTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTC55196.2022.9952926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着空间技术的进步,发射近地轨道卫星变得越来越容易,近地轨道卫星在各个领域得到了应用。特别是低轨道合成孔径雷达(SAR)系统,具有不受天气条件影响,24小时运行等诸多优势,备受关注。SAR系统可应用于目标探测、灾害观测等多个领域。然而,SAR图像存在斑点噪声,因此必须对图像进行预处理。目前对SAR图像处理的研究较多,但考虑缓冲状态的文献较少。因此,本文提出了基于深度强化学习(deep reinforcement learning, DRL)的低轨道SAR卫星和有限缓冲地面站SAR图像预处理的优化方法。DRL仿真结果表明,在改变LEO SAR卫星缓冲区大小的同时,根据缓冲区的状态选择最优滤波器大小,提高了缓冲区的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Reinforcement Learning based SAR Image Pre-Processing Algorithm with Finite Buffer LEO Satellite Networks
As space technology advances, launching low Earth orbit (LEO) satellites become easier and LEO satellites are being used in various fields. In particular, LEO synthetic aperture radar (SAR) system is in the spotlight with many advantages, e.g., regardless of weather condition, 24 hour operation. SAR system can be used in various fields such as object detection and disaster observation. However, SAR image has speckling noise, so image pre-processing must be required. There are many researches on the SAR image processing, however, few publications are considering a buffer status. Therefore, in this paper, we suggest the optimal SAR image pre-processing in LEO SAR satellites and a ground station with finite buffer based on deep reinforcement learning (DRL). As a result of DRL simulation, while changing the buffer size of the LEO SAR satellites, efficiency of buffer was improved by selecting the optimal filter size according to the state of the buffer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
6G Integrated Sensing and Communication: Recent Results and Future Directions Analysis of Use Cases Enabling AI/ML to IOT Service Platforms A Study on ECG Monitoring Embedded Systems Development of Touch Interface Using LIDAR for Multi-user Interactions in Projection-based VR Self-Conditional Crowd Activity Detection Network with Multi-label Classification Head
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1