EvoMCTS:通过遗传编程增强基于mcts的玩家

Amit Benbassat, M. Sipper
{"title":"EvoMCTS:通过遗传编程增强基于mcts的玩家","authors":"Amit Benbassat, M. Sipper","doi":"10.1109/CIG.2013.6633631","DOIUrl":null,"url":null,"abstract":"We present EvoMCTS, a genetic programming method for enhancing level of play in games. Our work focuses on the zero-sum, deterministic, perfect-information board game of Reversi. Expanding on our previous work on evolving board-state evaluation functions for alpha-beta search algorithm variants, we now evolve evaluation functions that augment the MTCS algorithm. We use strongly typed genetic programming, explicitly defined introns, and a selective directional crossover method. Our system regularly evolves players that outperform MCTS players that use the same amount of search. Our results prove scalable and EvoMCTS players whose search is increased offline still outperform MCTS counterparts. To demonstrate the generality of our method we apply EvoMCTS successfully to the game of Dodgem.","PeriodicalId":158902,"journal":{"name":"2013 IEEE Conference on Computational Inteligence in Games (CIG)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"EvoMCTS: Enhancing MCTS-based players through genetic programming\",\"authors\":\"Amit Benbassat, M. Sipper\",\"doi\":\"10.1109/CIG.2013.6633631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present EvoMCTS, a genetic programming method for enhancing level of play in games. Our work focuses on the zero-sum, deterministic, perfect-information board game of Reversi. Expanding on our previous work on evolving board-state evaluation functions for alpha-beta search algorithm variants, we now evolve evaluation functions that augment the MTCS algorithm. We use strongly typed genetic programming, explicitly defined introns, and a selective directional crossover method. Our system regularly evolves players that outperform MCTS players that use the same amount of search. Our results prove scalable and EvoMCTS players whose search is increased offline still outperform MCTS counterparts. To demonstrate the generality of our method we apply EvoMCTS successfully to the game of Dodgem.\",\"PeriodicalId\":158902,\"journal\":{\"name\":\"2013 IEEE Conference on Computational Inteligence in Games (CIG)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Conference on Computational Inteligence in Games (CIG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIG.2013.6633631\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Computational Inteligence in Games (CIG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2013.6633631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

我们提出了EvoMCTS,一种提高游戏水平的遗传编程方法。我们的工作重点是零和、确定性、完全信息棋盘游戏逆转。扩展我们之前的工作,为alpha-beta搜索算法变体开发董事会状态评估函数,我们现在开发增强MTCS算法的评估函数。我们使用强类型遗传编程,明确定义内含子,和选择性定向交叉方法。我们的系统会定期发展出比使用相同搜索量的MCTS玩家表现更好的玩家。我们的结果证明了可扩展性和EvoMCTS播放器,其搜索增加离线仍然优于MCTS对手。为了证明我们的方法的通用性,我们成功地将EvoMCTS应用到Dodgem游戏中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EvoMCTS: Enhancing MCTS-based players through genetic programming
We present EvoMCTS, a genetic programming method for enhancing level of play in games. Our work focuses on the zero-sum, deterministic, perfect-information board game of Reversi. Expanding on our previous work on evolving board-state evaluation functions for alpha-beta search algorithm variants, we now evolve evaluation functions that augment the MTCS algorithm. We use strongly typed genetic programming, explicitly defined introns, and a selective directional crossover method. Our system regularly evolves players that outperform MCTS players that use the same amount of search. Our results prove scalable and EvoMCTS players whose search is increased offline still outperform MCTS counterparts. To demonstrate the generality of our method we apply EvoMCTS successfully to the game of Dodgem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
QL-BT: Enhancing behaviour tree design and implementation with Q-learning Landscape automata for search based procedural content generation The structure of a 3-state finite transducer representation for Prisoner's Dilemma LGOAP: Adaptive layered planning for real-time videogames Evolved weapons for RPG drop systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1