基于ICA和时变AR模型的间歇期脑电信号去噪

Marzieh Mohammadi, S. H. Sardouie, M. Shamsollahi
{"title":"基于ICA和时变AR模型的间歇期脑电信号去噪","authors":"Marzieh Mohammadi, S. H. Sardouie, M. Shamsollahi","doi":"10.1109/ICBME.2014.7043910","DOIUrl":null,"url":null,"abstract":"Epilepsy is a brain disorder that 1% of people population are suffering from. One of the proper non-invasive equipment for diagnosis and analysis of this disease is electroencephalogram (EEG) recordings. However, EEG signals are often contaminated with noises and artifacts that hide epileptic signals of interest. Independent Component Analysis (ICA) is a common Blind Source Separation (BSS) method to denoise EEG signals. ICA has been proved as a worthwhile method to separate the signals of interest from noise and artifacts; nevertheless, it also has some weaknesses. In this work, to improve ICA performance in denoising context, we present an algorithm based on combination of ICA and Time Varying AutoRegressive (TVAR) model for denoising of interictal EEG signals. TVAR model is used serially after ICA method for interictal spike enhancement. The coefficients of TVAR model are estimated using Kaiman filter. The results indicate the proposed algorithm is better than ICA in terms of performance for very low Signal-to-Noise Ratio (SNR) values.","PeriodicalId":434822,"journal":{"name":"2014 21th Iranian Conference on Biomedical Engineering (ICBME)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Denoising of interictal EEG signals using ICA and Time Varying AR modeling\",\"authors\":\"Marzieh Mohammadi, S. H. Sardouie, M. Shamsollahi\",\"doi\":\"10.1109/ICBME.2014.7043910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Epilepsy is a brain disorder that 1% of people population are suffering from. One of the proper non-invasive equipment for diagnosis and analysis of this disease is electroencephalogram (EEG) recordings. However, EEG signals are often contaminated with noises and artifacts that hide epileptic signals of interest. Independent Component Analysis (ICA) is a common Blind Source Separation (BSS) method to denoise EEG signals. ICA has been proved as a worthwhile method to separate the signals of interest from noise and artifacts; nevertheless, it also has some weaknesses. In this work, to improve ICA performance in denoising context, we present an algorithm based on combination of ICA and Time Varying AutoRegressive (TVAR) model for denoising of interictal EEG signals. TVAR model is used serially after ICA method for interictal spike enhancement. The coefficients of TVAR model are estimated using Kaiman filter. The results indicate the proposed algorithm is better than ICA in terms of performance for very low Signal-to-Noise Ratio (SNR) values.\",\"PeriodicalId\":434822,\"journal\":{\"name\":\"2014 21th Iranian Conference on Biomedical Engineering (ICBME)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 21th Iranian Conference on Biomedical Engineering (ICBME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICBME.2014.7043910\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 21th Iranian Conference on Biomedical Engineering (ICBME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBME.2014.7043910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

癫痫是一种脑部疾病,1%的人患有此病。脑电图(EEG)记录是诊断和分析这种疾病的一种合适的非侵入性设备。然而,脑电图信号经常受到噪声和伪影的污染,从而隐藏了癫痫信号。独立分量分析(ICA)是一种常用的脑电信号去噪方法。ICA已被证明是将感兴趣的信号从噪声和伪影中分离出来的一种有价值的方法;然而,它也有一些弱点。本文提出了一种基于ICA和时变自回归(TVAR)模型相结合的脑电信号去噪算法,以提高ICA在去噪中的性能。在ICA方法之后,连续使用TVAR模型进行间歇尖峰增强。利用Kaiman滤波对TVAR模型的系数进行估计。结果表明,该算法在较低信噪比(SNR)值下的性能优于ICA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Denoising of interictal EEG signals using ICA and Time Varying AR modeling
Epilepsy is a brain disorder that 1% of people population are suffering from. One of the proper non-invasive equipment for diagnosis and analysis of this disease is electroencephalogram (EEG) recordings. However, EEG signals are often contaminated with noises and artifacts that hide epileptic signals of interest. Independent Component Analysis (ICA) is a common Blind Source Separation (BSS) method to denoise EEG signals. ICA has been proved as a worthwhile method to separate the signals of interest from noise and artifacts; nevertheless, it also has some weaknesses. In this work, to improve ICA performance in denoising context, we present an algorithm based on combination of ICA and Time Varying AutoRegressive (TVAR) model for denoising of interictal EEG signals. TVAR model is used serially after ICA method for interictal spike enhancement. The coefficients of TVAR model are estimated using Kaiman filter. The results indicate the proposed algorithm is better than ICA in terms of performance for very low Signal-to-Noise Ratio (SNR) values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A time-delay parallel cascade identification system for predicting jaw movements Automated decomposition of needle EMG signal using STFT and wavelet transforms Sparse representation-based super-resolution for diffusion weighted images Investigation of Brain Default Network's activation in autism spectrum disorders using Group Independent Component Analysis Pragmatic modeling of chaotic dynamical systems through artificial neural network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1