北方苏格兰松林地面植被的光合作用

L. Kulmala
{"title":"北方苏格兰松林地面植被的光合作用","authors":"L. Kulmala","doi":"10.14214/DF.132","DOIUrl":null,"url":null,"abstract":"Research on carbon uptake in boreal forests has mainly focused on mature trees, even though ground vegetation species are effective assimilators and can substantially contribute to the CO2 uptake of forests. Here, I examine the photosynthesis of the most common species of ground vegetation in a series of differently aged Scots pine stands, and at two clear-cut sites with substantial differences in fertility. In general, the biomass of evergreen species was highest at poor sites and below canopies, whereas grasses and herbs predominated at fertile open sites. Unlike mosses, the measured vascular species showed clear annual cycles in their photosynthetic activity, which increased earlier and decreased later in evergreen vascular species than in deciduous species. However, intraspecific variation and self-shading create differences in the overall level of photosynthesis. Light, temperature history, soil moisture and recent possible frosts could explain the changes in photosynthesis of low shrubs and partially also some changes in deciduous species. Light and the occurrence of rain events explained most of the variation in the photosynthesis of mosses. The photosynthetic production of ground vegetation was first upscaled, using species-specific and mass-based photosynthetic activities and average biomass of the site, and then integrated over the growing season, using changes in environmental factors. Leaf mass-based photosynthesis was highest in deciduous species, resulting in notably higher photosynthetic production at fertile sites than at poor clear-cut sites. The photosynthetic production decreased with stand age, because flora changed towards evergreen species, and light levels diminished below the canopy. In addition, the leaf mass-based photosynthetic activity of some low shrubs declined with the age of the surrounding trees. Different measuring methods led to different momentary rate of photosynthesis. Therefore, the choice of measuring method needs special attention.","PeriodicalId":375560,"journal":{"name":"Dissertationes Forestales","volume":"145 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Photosynthesis of ground vegetation in boreal Scots pine forests\",\"authors\":\"L. Kulmala\",\"doi\":\"10.14214/DF.132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Research on carbon uptake in boreal forests has mainly focused on mature trees, even though ground vegetation species are effective assimilators and can substantially contribute to the CO2 uptake of forests. Here, I examine the photosynthesis of the most common species of ground vegetation in a series of differently aged Scots pine stands, and at two clear-cut sites with substantial differences in fertility. In general, the biomass of evergreen species was highest at poor sites and below canopies, whereas grasses and herbs predominated at fertile open sites. Unlike mosses, the measured vascular species showed clear annual cycles in their photosynthetic activity, which increased earlier and decreased later in evergreen vascular species than in deciduous species. However, intraspecific variation and self-shading create differences in the overall level of photosynthesis. Light, temperature history, soil moisture and recent possible frosts could explain the changes in photosynthesis of low shrubs and partially also some changes in deciduous species. Light and the occurrence of rain events explained most of the variation in the photosynthesis of mosses. The photosynthetic production of ground vegetation was first upscaled, using species-specific and mass-based photosynthetic activities and average biomass of the site, and then integrated over the growing season, using changes in environmental factors. Leaf mass-based photosynthesis was highest in deciduous species, resulting in notably higher photosynthetic production at fertile sites than at poor clear-cut sites. The photosynthetic production decreased with stand age, because flora changed towards evergreen species, and light levels diminished below the canopy. In addition, the leaf mass-based photosynthetic activity of some low shrubs declined with the age of the surrounding trees. Different measuring methods led to different momentary rate of photosynthesis. Therefore, the choice of measuring method needs special attention.\",\"PeriodicalId\":375560,\"journal\":{\"name\":\"Dissertationes Forestales\",\"volume\":\"145 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dissertationes Forestales\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14214/DF.132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dissertationes Forestales","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14214/DF.132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

对北方森林碳吸收的研究主要集中在成熟树木上,尽管地面植被物种是有效的同化者,可以大大促进森林的二氧化碳吸收。在这里,我研究了一系列不同年龄的苏格兰松林中最常见的地面植被的光合作用,并在两个生育能力有很大差异的明确地点进行了研究。一般来说,常绿物种的生物量在贫瘠立地和冠层以下最高,而在肥沃的开阔立地以草和草本植物为主。与苔藓不同,维管物种的光合活性表现出明显的年循环,常绿维管物种的光合活性比落叶物种的光合活性增加得早,下降得晚。然而,种内变异和自遮阳造成光合作用总体水平的差异。光照、温度历史、土壤湿度和近期可能发生的霜冻可以解释低矮灌木光合作用的变化,并部分解释落叶物种的一些变化。光照和降雨事件的发生解释了苔藓光合作用的大部分变化。首先利用物种特异性和质量基础的光合作用活动和场地的平均生物量对地面植被的光合作用进行了升级,然后利用环境因素的变化对生长季节进行了整合。落叶树种的叶片质量光合作用最高,导致肥沃地的光合作用产量明显高于贫瘠地。随着林龄的增长,光合产量下降,主要是由于植物区系向常绿物种转变,林冠下光照水平下降。此外,一些低矮灌木的叶质量光合活性随着周围乔木的树龄而下降。不同的测量方法导致瞬时光合速率不同。因此,测量方法的选择需要特别注意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Photosynthesis of ground vegetation in boreal Scots pine forests
Research on carbon uptake in boreal forests has mainly focused on mature trees, even though ground vegetation species are effective assimilators and can substantially contribute to the CO2 uptake of forests. Here, I examine the photosynthesis of the most common species of ground vegetation in a series of differently aged Scots pine stands, and at two clear-cut sites with substantial differences in fertility. In general, the biomass of evergreen species was highest at poor sites and below canopies, whereas grasses and herbs predominated at fertile open sites. Unlike mosses, the measured vascular species showed clear annual cycles in their photosynthetic activity, which increased earlier and decreased later in evergreen vascular species than in deciduous species. However, intraspecific variation and self-shading create differences in the overall level of photosynthesis. Light, temperature history, soil moisture and recent possible frosts could explain the changes in photosynthesis of low shrubs and partially also some changes in deciduous species. Light and the occurrence of rain events explained most of the variation in the photosynthesis of mosses. The photosynthetic production of ground vegetation was first upscaled, using species-specific and mass-based photosynthetic activities and average biomass of the site, and then integrated over the growing season, using changes in environmental factors. Leaf mass-based photosynthesis was highest in deciduous species, resulting in notably higher photosynthetic production at fertile sites than at poor clear-cut sites. The photosynthetic production decreased with stand age, because flora changed towards evergreen species, and light levels diminished below the canopy. In addition, the leaf mass-based photosynthetic activity of some low shrubs declined with the age of the surrounding trees. Different measuring methods led to different momentary rate of photosynthesis. Therefore, the choice of measuring method needs special attention.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Land-use patterns of energy crops in the agricultural landscape Business ecosystem and end-user lenses in wooden multistorey construction Tree growth dynamics and ecological recovery in Kitulangalo miombo woodlands Morogoro, Tanzania O3 and NOx interactions with foliage: processes and compounds at the needle-air interface Legitimacy of forest policy – concept analysis and empirical applications in Finland
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1