基于潜在语义语言模型自适应的鲁棒主题推理

A. Heidel, Lin-Shan Lee
{"title":"基于潜在语义语言模型自适应的鲁棒主题推理","authors":"A. Heidel, Lin-Shan Lee","doi":"10.1109/ASRU.2007.4430105","DOIUrl":null,"url":null,"abstract":"We perform topic-based, unsupervised language model adaptation under an N-best rescoring framework by using previous-pass system hypotheses to infer a topic mixture which is used to select topic-dependent LMs for interpolation with a topic-independent LM. Our primary focus is on techniques for improving the robustness of topic inference for a given utterance with respect to recognition errors, including the use of ASR confidence and contextual information from surrounding utterances. We describe a novel application of metadata-based pseudo-story segmentation to language model adaptation, and present good improvements to character error rate on multi-genre GALE Project data in Mandarin Chinese.","PeriodicalId":371729,"journal":{"name":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Robust topic inference for latent semantic language model adaptation\",\"authors\":\"A. Heidel, Lin-Shan Lee\",\"doi\":\"10.1109/ASRU.2007.4430105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We perform topic-based, unsupervised language model adaptation under an N-best rescoring framework by using previous-pass system hypotheses to infer a topic mixture which is used to select topic-dependent LMs for interpolation with a topic-independent LM. Our primary focus is on techniques for improving the robustness of topic inference for a given utterance with respect to recognition errors, including the use of ASR confidence and contextual information from surrounding utterances. We describe a novel application of metadata-based pseudo-story segmentation to language model adaptation, and present good improvements to character error rate on multi-genre GALE Project data in Mandarin Chinese.\",\"PeriodicalId\":371729,\"journal\":{\"name\":\"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2007.4430105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2007.4430105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

我们在N-best评分框架下执行基于主题的无监督语言模型自适应,通过使用先前的系统假设来推断主题混合物,该主题混合物用于选择主题相关的LM进行与主题独立LM的插值。我们的主要重点是提高给定话语在识别错误方面的主题推理鲁棒性的技术,包括使用ASR置信度和来自周围话语的上下文信息。本文描述了基于元数据的伪故事分割在语言模型自适应中的新应用,并对多体裁GALE项目中文普通话数据的字符错误率进行了较好的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust topic inference for latent semantic language model adaptation
We perform topic-based, unsupervised language model adaptation under an N-best rescoring framework by using previous-pass system hypotheses to infer a topic mixture which is used to select topic-dependent LMs for interpolation with a topic-independent LM. Our primary focus is on techniques for improving the robustness of topic inference for a given utterance with respect to recognition errors, including the use of ASR confidence and contextual information from surrounding utterances. We describe a novel application of metadata-based pseudo-story segmentation to language model adaptation, and present good improvements to character error rate on multi-genre GALE Project data in Mandarin Chinese.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predictive linear transforms for noise robust speech recognition Development of a phonetic system for large vocabulary Arabic speech recognition Error simulation for training statistical dialogue systems An enhanced minimum classification error learning framework for balancing insertion, deletion and substitution errors Monolingual and crosslingual comparison of tandem features derived from articulatory and phone MLPS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1