{"title":"一种用于仿生眼动控制的速度补偿视觉伺服方法","authors":"Zheng Zhu, Wei Zou, Qingbin Wang, Feng Zhang","doi":"10.2316/Journal.206.2018.1.206-4938","DOIUrl":null,"url":null,"abstract":"Aiming at the problem of tracking delay and large errors when conventional image-based visual servo is applied to tracking moving objects, a velocity compensation image-based visual servo controller is proposed for head-fixed oculomotor control in this paper, which covers saccade, smooth pursuit and vergence. The controller consists of a basic visual servo sub-controller and a velocity compensation sub-controller. The former is used to eliminate position error and the latter takes into account the target’s velocity. Corresponding Jacobian matrixes are derived to implement the controller. At the same time, a novel adaptive gain is designed to boost the control law and continuous velocities are implemented to avoid abrupt changes. A simple but stable fixation point detection method is proposed to provide the input for the whole system. Extensive experiments are conducted and analysed in a real binocular platform implemented with off-the-shelf set-ups, which demonstrate the effectiveness of the","PeriodicalId":206015,"journal":{"name":"Int. J. Robotics Autom.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A velocity compensation Visual servo method for oculomotor control of bionic eyes\",\"authors\":\"Zheng Zhu, Wei Zou, Qingbin Wang, Feng Zhang\",\"doi\":\"10.2316/Journal.206.2018.1.206-4938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the problem of tracking delay and large errors when conventional image-based visual servo is applied to tracking moving objects, a velocity compensation image-based visual servo controller is proposed for head-fixed oculomotor control in this paper, which covers saccade, smooth pursuit and vergence. The controller consists of a basic visual servo sub-controller and a velocity compensation sub-controller. The former is used to eliminate position error and the latter takes into account the target’s velocity. Corresponding Jacobian matrixes are derived to implement the controller. At the same time, a novel adaptive gain is designed to boost the control law and continuous velocities are implemented to avoid abrupt changes. A simple but stable fixation point detection method is proposed to provide the input for the whole system. Extensive experiments are conducted and analysed in a real binocular platform implemented with off-the-shelf set-ups, which demonstrate the effectiveness of the\",\"PeriodicalId\":206015,\"journal\":{\"name\":\"Int. J. Robotics Autom.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Robotics Autom.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2316/Journal.206.2018.1.206-4938\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Robotics Autom.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2316/Journal.206.2018.1.206-4938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A velocity compensation Visual servo method for oculomotor control of bionic eyes
Aiming at the problem of tracking delay and large errors when conventional image-based visual servo is applied to tracking moving objects, a velocity compensation image-based visual servo controller is proposed for head-fixed oculomotor control in this paper, which covers saccade, smooth pursuit and vergence. The controller consists of a basic visual servo sub-controller and a velocity compensation sub-controller. The former is used to eliminate position error and the latter takes into account the target’s velocity. Corresponding Jacobian matrixes are derived to implement the controller. At the same time, a novel adaptive gain is designed to boost the control law and continuous velocities are implemented to avoid abrupt changes. A simple but stable fixation point detection method is proposed to provide the input for the whole system. Extensive experiments are conducted and analysed in a real binocular platform implemented with off-the-shelf set-ups, which demonstrate the effectiveness of the