在线性时间内识别RFID标签类别

M. Kodialam, W. Lau, T. Nandagopal
{"title":"在线性时间内识别RFID标签类别","authors":"M. Kodialam, W. Lau, T. Nandagopal","doi":"10.1109/WIOPT.2009.5291639","DOIUrl":null,"url":null,"abstract":"Given a large set of RFID tags, we are interested in determining the categories of tags that are present in the shortest time possible. Since there can be more than one tag present in a particular category, pure randomized strategies that rely on resolving individual tags are very inefficient. Instead, we rely on a pseudo-random strategy that utilizes a uniform hash function to accurately identify all t categories present among a given set of ψ tags with high probability. We propose two algorithms: (a) a single frame algorithm that determines the optimal frame size, and (b) a probabilistic version where the frame size is fixed, and we select the probability to minimize the number of frames needed for identification. Both of these algorithms run in time linear to the number of categories present, t. We show that our approach significantly outperforms existing algorithms for category identification. The performance of our algorithms is within a constant factor of the lower bound.","PeriodicalId":143632,"journal":{"name":"2009 7th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Identifying RFID tag categories in linear time\",\"authors\":\"M. Kodialam, W. Lau, T. Nandagopal\",\"doi\":\"10.1109/WIOPT.2009.5291639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a large set of RFID tags, we are interested in determining the categories of tags that are present in the shortest time possible. Since there can be more than one tag present in a particular category, pure randomized strategies that rely on resolving individual tags are very inefficient. Instead, we rely on a pseudo-random strategy that utilizes a uniform hash function to accurately identify all t categories present among a given set of ψ tags with high probability. We propose two algorithms: (a) a single frame algorithm that determines the optimal frame size, and (b) a probabilistic version where the frame size is fixed, and we select the probability to minimize the number of frames needed for identification. Both of these algorithms run in time linear to the number of categories present, t. We show that our approach significantly outperforms existing algorithms for category identification. The performance of our algorithms is within a constant factor of the lower bound.\",\"PeriodicalId\":143632,\"journal\":{\"name\":\"2009 7th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 7th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WIOPT.2009.5291639\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 7th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIOPT.2009.5291639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

给定大量的RFID标签,我们感兴趣的是确定在尽可能短的时间内出现的标签类别。由于在一个特定的类别中可能存在多个标签,因此依赖于解析单个标签的纯随机策略非常低效。相反,我们依赖于伪随机策略,该策略利用统一哈希函数以高概率准确识别给定的一组ψ标签中存在的所有t个类别。我们提出了两种算法:(a)确定最佳帧大小的单帧算法,以及(b)帧大小固定的概率版本,我们选择概率来最小化识别所需的帧数。这两种算法都与现有的类别数量t呈时间线性关系。我们表明,我们的方法显著优于现有的类别识别算法。我们的算法的性能在下界的一个常数因子内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identifying RFID tag categories in linear time
Given a large set of RFID tags, we are interested in determining the categories of tags that are present in the shortest time possible. Since there can be more than one tag present in a particular category, pure randomized strategies that rely on resolving individual tags are very inefficient. Instead, we rely on a pseudo-random strategy that utilizes a uniform hash function to accurately identify all t categories present among a given set of ψ tags with high probability. We propose two algorithms: (a) a single frame algorithm that determines the optimal frame size, and (b) a probabilistic version where the frame size is fixed, and we select the probability to minimize the number of frames needed for identification. Both of these algorithms run in time linear to the number of categories present, t. We show that our approach significantly outperforms existing algorithms for category identification. The performance of our algorithms is within a constant factor of the lower bound.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Joint load balancing, scheduling, and interference mitigation in multi-cell and multi-carrier wireless data systems Transmission schedule optimization for half-duplex multiple-relay networks Quantization, channel compensation, and energy allocation for estimation in wireless sensor networks Characterization of power consumption in thin clients due to protocol data transmission over IEEE 802.11 Battery recovery aware sensor networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1