使用运行参数、数字复制品和模型进行状态监测和改善设备健康

Fausto Carlevaro, S. Cioncolini, Marzia Sepe, Ilaria Parrella, C. Allegorico, Laura De Stefanis, Maria Mastroianni, Ernesto Escobedo
{"title":"使用运行参数、数字复制品和模型进行状态监测和改善设备健康","authors":"Fausto Carlevaro, S. Cioncolini, Marzia Sepe, Ilaria Parrella, C. Allegorico, Laura De Stefanis, Maria Mastroianni, Ernesto Escobedo","doi":"10.1115/GT2018-76849","DOIUrl":null,"url":null,"abstract":"Several operating parameters for the control and protection of the units are acquired by the control and protection systems used in industrial applications. The use of these parameters in conjunction of physical models, empirical models and transfer functions (that represent digital replicas of the engine) allows for a broader scope of condition monitoring, taking into account the wing to wing process which spans from data acquisition to end user actionable insight. This paper describes 3 specific cases: 1) an algorithm based on the performance model of the overall GT used to monitor the axial compressor degradation and optimize the planned axial compressor water wash of an aero-derivative GT; 2) an analytic based on the flow function physic model used to monitor the clogging of the fuel nozzles in a heavy duty GT and to plan their maintenance; 3) an analytic based on a hybrid model used to monitor the axial thrust acting on a roller bearing of an aero-derivative GT and used to verify the status of the bearing and to plan its maintenance. Moreover, the paper provides details about the evaluation of the measurements, describes the model accuracy and explains how the results obtained are affected by these uncertainties and the methods used to mitigate these uncertainties. In addition, this paper shows a method to aggregate and weigh the monitoring of each single component and its own status into an overall health view.","PeriodicalId":412490,"journal":{"name":"Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Use of Operating Parameters, Digital Replicas and Models for Condition Monitoring and Improved Equipment Health\",\"authors\":\"Fausto Carlevaro, S. Cioncolini, Marzia Sepe, Ilaria Parrella, C. Allegorico, Laura De Stefanis, Maria Mastroianni, Ernesto Escobedo\",\"doi\":\"10.1115/GT2018-76849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several operating parameters for the control and protection of the units are acquired by the control and protection systems used in industrial applications. The use of these parameters in conjunction of physical models, empirical models and transfer functions (that represent digital replicas of the engine) allows for a broader scope of condition monitoring, taking into account the wing to wing process which spans from data acquisition to end user actionable insight. This paper describes 3 specific cases: 1) an algorithm based on the performance model of the overall GT used to monitor the axial compressor degradation and optimize the planned axial compressor water wash of an aero-derivative GT; 2) an analytic based on the flow function physic model used to monitor the clogging of the fuel nozzles in a heavy duty GT and to plan their maintenance; 3) an analytic based on a hybrid model used to monitor the axial thrust acting on a roller bearing of an aero-derivative GT and used to verify the status of the bearing and to plan its maintenance. Moreover, the paper provides details about the evaluation of the measurements, describes the model accuracy and explains how the results obtained are affected by these uncertainties and the methods used to mitigate these uncertainties. In addition, this paper shows a method to aggregate and weigh the monitoring of each single component and its own status into an overall health view.\",\"PeriodicalId\":412490,\"journal\":{\"name\":\"Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/GT2018-76849\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/GT2018-76849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

工业应用中使用的控制和保护系统可以获取控制和保护装置的几个操作参数。将这些参数与物理模型、经验模型和传递函数(代表发动机的数字复制品)结合使用,可以实现更广泛的状态监测,同时考虑到从数据采集到最终用户可操作的洞察的机翼到机翼的过程。本文介绍了3个具体案例:1)基于整体涡轮性能模型的一种算法,用于监测某型航空导数涡轮轴流压气机退化并优化轴流压气机洗水计划;2)基于流动函数物理模型的分析,用于监测重型燃气轮机燃油喷嘴堵塞并制定维修计划;3)基于混合模型的分析,用于监测作用在航空导数GT滚子轴承上的轴向推力,并用于验证轴承的状态和维护计划。此外,本文还提供了有关测量评估的详细信息,描述了模型的精度,并解释了这些不确定性如何影响所获得的结果以及用于减轻这些不确定性的方法。此外,本文还介绍了一种方法,该方法将对每个单个组件及其自身状态的监视汇总和权衡到一个整体运行状况视图中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Use of Operating Parameters, Digital Replicas and Models for Condition Monitoring and Improved Equipment Health
Several operating parameters for the control and protection of the units are acquired by the control and protection systems used in industrial applications. The use of these parameters in conjunction of physical models, empirical models and transfer functions (that represent digital replicas of the engine) allows for a broader scope of condition monitoring, taking into account the wing to wing process which spans from data acquisition to end user actionable insight. This paper describes 3 specific cases: 1) an algorithm based on the performance model of the overall GT used to monitor the axial compressor degradation and optimize the planned axial compressor water wash of an aero-derivative GT; 2) an analytic based on the flow function physic model used to monitor the clogging of the fuel nozzles in a heavy duty GT and to plan their maintenance; 3) an analytic based on a hybrid model used to monitor the axial thrust acting on a roller bearing of an aero-derivative GT and used to verify the status of the bearing and to plan its maintenance. Moreover, the paper provides details about the evaluation of the measurements, describes the model accuracy and explains how the results obtained are affected by these uncertainties and the methods used to mitigate these uncertainties. In addition, this paper shows a method to aggregate and weigh the monitoring of each single component and its own status into an overall health view.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Use of Departure Functions to Estimate Deviation of a Real Gas From the Ideal Gas Model Design Considerations for High Pressure Boil-Off Gas (BOG) Centrifugal Compressors With Synchronous Motor Drives in LNG Liquefaction Plants An Overview of Initial Operational Experience With the Closed-Loop sCO2 Test Facility at Cranfield University Wet Gas Compressor Modeling and Performance Scaling The Effect of Blade Deflections on the Torsional Dynamic of a Wind Turbine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1