Nesma Mahmoud, Youssef Essam, Radwa El Shawi, S. Sakr
{"title":"DLBench:深度学习框架的实验评估","authors":"Nesma Mahmoud, Youssef Essam, Radwa El Shawi, S. Sakr","doi":"10.1109/BigDataCongress.2019.00034","DOIUrl":null,"url":null,"abstract":"Recently, deep learning has become one of the most disruptive trends in the technology world. Deep learning techniques are increasingly achieving significant results in different domains such as speech recognition, image recognition and natural language processing. In general, there are various reasons behind the increasing popularity of deep learning techniques. These reasons include increasing data availability, the increasing availability of powerful hardware and computing resources in addition to the increasing availability of deep learning frameworks. In practice, the increasing popularity of deep learning frameworks calls for benchmarking studies that can effectively evaluate the performance characteristics of these systems. In this paper, we present an extensive experimental study of six popular deep learning frameworks, namely TensorFlow, MXNet, PyTorch, Theano, Chainer, and Keras. Our experimental evaluation covers different aspects for its comparison including accuracy, speed and resource consumption. Our experiments have been conducted on both CPU and GPU environments and using different datasets. We report and analyze the performance characteristics of the studied frameworks. In addition, we report a set of insights and important lessons that we have learned from conducting our experiments.","PeriodicalId":335850,"journal":{"name":"2019 IEEE International Congress on Big Data (BigDataCongress)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"DLBench: An Experimental Evaluation of Deep Learning Frameworks\",\"authors\":\"Nesma Mahmoud, Youssef Essam, Radwa El Shawi, S. Sakr\",\"doi\":\"10.1109/BigDataCongress.2019.00034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, deep learning has become one of the most disruptive trends in the technology world. Deep learning techniques are increasingly achieving significant results in different domains such as speech recognition, image recognition and natural language processing. In general, there are various reasons behind the increasing popularity of deep learning techniques. These reasons include increasing data availability, the increasing availability of powerful hardware and computing resources in addition to the increasing availability of deep learning frameworks. In practice, the increasing popularity of deep learning frameworks calls for benchmarking studies that can effectively evaluate the performance characteristics of these systems. In this paper, we present an extensive experimental study of six popular deep learning frameworks, namely TensorFlow, MXNet, PyTorch, Theano, Chainer, and Keras. Our experimental evaluation covers different aspects for its comparison including accuracy, speed and resource consumption. Our experiments have been conducted on both CPU and GPU environments and using different datasets. We report and analyze the performance characteristics of the studied frameworks. In addition, we report a set of insights and important lessons that we have learned from conducting our experiments.\",\"PeriodicalId\":335850,\"journal\":{\"name\":\"2019 IEEE International Congress on Big Data (BigDataCongress)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Congress on Big Data (BigDataCongress)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BigDataCongress.2019.00034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Congress on Big Data (BigDataCongress)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BigDataCongress.2019.00034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DLBench: An Experimental Evaluation of Deep Learning Frameworks
Recently, deep learning has become one of the most disruptive trends in the technology world. Deep learning techniques are increasingly achieving significant results in different domains such as speech recognition, image recognition and natural language processing. In general, there are various reasons behind the increasing popularity of deep learning techniques. These reasons include increasing data availability, the increasing availability of powerful hardware and computing resources in addition to the increasing availability of deep learning frameworks. In practice, the increasing popularity of deep learning frameworks calls for benchmarking studies that can effectively evaluate the performance characteristics of these systems. In this paper, we present an extensive experimental study of six popular deep learning frameworks, namely TensorFlow, MXNet, PyTorch, Theano, Chainer, and Keras. Our experimental evaluation covers different aspects for its comparison including accuracy, speed and resource consumption. Our experiments have been conducted on both CPU and GPU environments and using different datasets. We report and analyze the performance characteristics of the studied frameworks. In addition, we report a set of insights and important lessons that we have learned from conducting our experiments.