R. H. Wilson, G. Kennedy, C. Campbell, W. Voorhees, James E. Parker, C. Kowalczewski, Jason Payne, A. Kowalczewski, R. Christy, Jeffrey Whitmore, R. Stone, Anthony J. Durkin
{"title":"利用机器学习和多光谱空间频域成像数据来表征毫米波源的烧伤","authors":"R. H. Wilson, G. Kennedy, C. Campbell, W. Voorhees, James E. Parker, C. Kowalczewski, Jason Payne, A. Kowalczewski, R. Christy, Jeffrey Whitmore, R. Stone, Anthony J. Durkin","doi":"10.1364/omp.2023.oth1e.7","DOIUrl":null,"url":null,"abstract":"Accurate, prompt classification of burn wound severity is crucial for patient care. We use non-contact multispectral spatial frequency domain imaging technology coupled with machine learning algorithms to categorize millimeter-wave radiation burns in a preclinical model.","PeriodicalId":111173,"journal":{"name":"Biophotonics Congress: Optics in the Life Sciences 2023 (OMA, NTM, BODA, OMP, BRAIN)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Machine Learning with Multispectral Spatial Frequency Domain Imaging Data to Characterize Burns from Millimeter-Wave Sources\",\"authors\":\"R. H. Wilson, G. Kennedy, C. Campbell, W. Voorhees, James E. Parker, C. Kowalczewski, Jason Payne, A. Kowalczewski, R. Christy, Jeffrey Whitmore, R. Stone, Anthony J. Durkin\",\"doi\":\"10.1364/omp.2023.oth1e.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate, prompt classification of burn wound severity is crucial for patient care. We use non-contact multispectral spatial frequency domain imaging technology coupled with machine learning algorithms to categorize millimeter-wave radiation burns in a preclinical model.\",\"PeriodicalId\":111173,\"journal\":{\"name\":\"Biophotonics Congress: Optics in the Life Sciences 2023 (OMA, NTM, BODA, OMP, BRAIN)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophotonics Congress: Optics in the Life Sciences 2023 (OMA, NTM, BODA, OMP, BRAIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/omp.2023.oth1e.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophotonics Congress: Optics in the Life Sciences 2023 (OMA, NTM, BODA, OMP, BRAIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/omp.2023.oth1e.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Using Machine Learning with Multispectral Spatial Frequency Domain Imaging Data to Characterize Burns from Millimeter-Wave Sources
Accurate, prompt classification of burn wound severity is crucial for patient care. We use non-contact multispectral spatial frequency domain imaging technology coupled with machine learning algorithms to categorize millimeter-wave radiation burns in a preclinical model.