J. A. Pero-Sanz, D. Plaza, M. Ruiz, J. Asensio, J. Verdeja
{"title":"钢管蠕变失效分析","authors":"J. A. Pero-Sanz, D. Plaza, M. Ruiz, J. Asensio, J. Verdeja","doi":"10.31399/asm.fach.power.c9001711","DOIUrl":null,"url":null,"abstract":"\n Failures of 10Cr-Mo9-10 and X 20Cr-Mo-V12-1 superheated pipes during service in steam power generation plants are described. Through micrographic and fractographic analysis, creep and overheating were identified as the cause of failure. The Larson-Miller parameter is computed, as a function of oxidation thickness, temperature and time, confirming the creep failure diagnostic.","PeriodicalId":107406,"journal":{"name":"ASM Failure Analysis Case Histories: Power Generating Equipment","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Creep Failure Analysis of Steel Tubes\",\"authors\":\"J. A. Pero-Sanz, D. Plaza, M. Ruiz, J. Asensio, J. Verdeja\",\"doi\":\"10.31399/asm.fach.power.c9001711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Failures of 10Cr-Mo9-10 and X 20Cr-Mo-V12-1 superheated pipes during service in steam power generation plants are described. Through micrographic and fractographic analysis, creep and overheating were identified as the cause of failure. The Larson-Miller parameter is computed, as a function of oxidation thickness, temperature and time, confirming the creep failure diagnostic.\",\"PeriodicalId\":107406,\"journal\":{\"name\":\"ASM Failure Analysis Case Histories: Power Generating Equipment\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASM Failure Analysis Case Histories: Power Generating Equipment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31399/asm.fach.power.c9001711\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASM Failure Analysis Case Histories: Power Generating Equipment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31399/asm.fach.power.c9001711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
介绍了蒸汽发电厂10Cr-Mo9-10和x20cr - mo - v12 -1过热管在使用过程中的故障。通过显微和断口分析,确定蠕变和过热是失效的原因。计算了拉尔森-米勒参数作为氧化厚度、温度和时间的函数,确定了蠕变失效诊断。
Failures of 10Cr-Mo9-10 and X 20Cr-Mo-V12-1 superheated pipes during service in steam power generation plants are described. Through micrographic and fractographic analysis, creep and overheating were identified as the cause of failure. The Larson-Miller parameter is computed, as a function of oxidation thickness, temperature and time, confirming the creep failure diagnostic.