基于成本效益的自动驾驶边缘云部署方法

C. Park, Haneul Ko, Yeunwoong Kyung
{"title":"基于成本效益的自动驾驶边缘云部署方法","authors":"C. Park, Haneul Ko, Yeunwoong Kyung","doi":"10.1109/ICTC55196.2022.9952764","DOIUrl":null,"url":null,"abstract":"When edge clouds are deployed at all road side unit (RSU), autonomous vehicles (AVs) can offload the tasks and receive the results of the tasks with low latency. However, too excessive deployment of edge clouds can lead significant capital expenditure (CAPEX) of an offloading service provider. In this paper, we propose a cost-efficient edge cloud deployment method where the deployment locations of edge clouds are minimally decided by considering task offloading rates of road segments. To minimize the number of deployed edge clouds while supporting all generated traffic volumes, we formulate an integer non-linear programming (INLP) problem. For the practical deployment even at a huge target area, we propose a low-complexity heuristic algorithm called traffic-aware deployment algorithm (TADA). Evaluation results demonstrate that TADA can achieve a similar deployment cost with the optimal solution while handling all generated traffic.","PeriodicalId":441404,"journal":{"name":"2022 13th International Conference on Information and Communication Technology Convergence (ICTC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cost-Efficient Edge Cloud Deployment Method for Autonomous Driving\",\"authors\":\"C. Park, Haneul Ko, Yeunwoong Kyung\",\"doi\":\"10.1109/ICTC55196.2022.9952764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When edge clouds are deployed at all road side unit (RSU), autonomous vehicles (AVs) can offload the tasks and receive the results of the tasks with low latency. However, too excessive deployment of edge clouds can lead significant capital expenditure (CAPEX) of an offloading service provider. In this paper, we propose a cost-efficient edge cloud deployment method where the deployment locations of edge clouds are minimally decided by considering task offloading rates of road segments. To minimize the number of deployed edge clouds while supporting all generated traffic volumes, we formulate an integer non-linear programming (INLP) problem. For the practical deployment even at a huge target area, we propose a low-complexity heuristic algorithm called traffic-aware deployment algorithm (TADA). Evaluation results demonstrate that TADA can achieve a similar deployment cost with the optimal solution while handling all generated traffic.\",\"PeriodicalId\":441404,\"journal\":{\"name\":\"2022 13th International Conference on Information and Communication Technology Convergence (ICTC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 13th International Conference on Information and Communication Technology Convergence (ICTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTC55196.2022.9952764\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 13th International Conference on Information and Communication Technology Convergence (ICTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTC55196.2022.9952764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当边缘云部署在所有路侧单元(RSU)时,自动驾驶汽车(av)可以卸载任务并以低延迟接收任务结果。然而,过度部署边缘云会导致卸载服务提供商的大量资本支出(CAPEX)。在本文中,我们提出了一种经济高效的边缘云部署方法,该方法通过考虑路段的任务卸载率来最小限度地决定边缘云的部署位置。为了在支持所有生成的流量的同时最小化部署的边缘云的数量,我们制定了一个整数非线性规划(INLP)问题。对于实际部署,即使是在巨大的目标区域,我们提出了一种低复杂度的启发式算法,称为交通感知部署算法(TADA)。评估结果表明,在处理所有生成的流量时,TADA可以使用最优解决方案实现相似的部署成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cost-Efficient Edge Cloud Deployment Method for Autonomous Driving
When edge clouds are deployed at all road side unit (RSU), autonomous vehicles (AVs) can offload the tasks and receive the results of the tasks with low latency. However, too excessive deployment of edge clouds can lead significant capital expenditure (CAPEX) of an offloading service provider. In this paper, we propose a cost-efficient edge cloud deployment method where the deployment locations of edge clouds are minimally decided by considering task offloading rates of road segments. To minimize the number of deployed edge clouds while supporting all generated traffic volumes, we formulate an integer non-linear programming (INLP) problem. For the practical deployment even at a huge target area, we propose a low-complexity heuristic algorithm called traffic-aware deployment algorithm (TADA). Evaluation results demonstrate that TADA can achieve a similar deployment cost with the optimal solution while handling all generated traffic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
6G Integrated Sensing and Communication: Recent Results and Future Directions Analysis of Use Cases Enabling AI/ML to IOT Service Platforms A Study on ECG Monitoring Embedded Systems Development of Touch Interface Using LIDAR for Multi-user Interactions in Projection-based VR Self-Conditional Crowd Activity Detection Network with Multi-label Classification Head
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1