用于电机预测性维护的自我可持续物联网无线传感器节点

T. Polonelli, Andrea Bentivogli, Guido Comai, M. Magno
{"title":"用于电机预测性维护的自我可持续物联网无线传感器节点","authors":"T. Polonelli, Andrea Bentivogli, Guido Comai, M. Magno","doi":"10.1109/SAS54819.2022.9881349","DOIUrl":null,"url":null,"abstract":"Unexpected equipment failure is expensive and potentially hazardous for workers and users. Periodic inspections and maintenance at predefined intervals aim to limit unplanned production downtime, costly replacement of parts and safety concerns. On the other side, predictive maintenance techniques can monitor equipment as it operates, anticipating deterioration and incoming breakages, enabling just-in-time services at reduced operational costs. This paper presents a deploy and forget predictive maintenance sensor node designed explicitly for industrial electric motors. It is targeted for AC mono and three-phase asynchronous motors and generators, measuring vibrations, environmental noise, temperature, and the external magnetic field. The proposed sensor achieves self-sustainability by exploiting a 4x4 cm thermal source for 72 s with a ∆T of 20 °C, and it features short-long wireless data transfer respectively over WiFi and the cellular NB-IoT network. We tested the prototype on different electric motors, form 4 kW to 110 kW, reporting here its capability to detect anomalies using a vibration spectral analysis.","PeriodicalId":129732,"journal":{"name":"2022 IEEE Sensors Applications Symposium (SAS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Self-sustainable IoT Wireless Sensor Node for Predictive Maintenance on Electric Motors\",\"authors\":\"T. Polonelli, Andrea Bentivogli, Guido Comai, M. Magno\",\"doi\":\"10.1109/SAS54819.2022.9881349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unexpected equipment failure is expensive and potentially hazardous for workers and users. Periodic inspections and maintenance at predefined intervals aim to limit unplanned production downtime, costly replacement of parts and safety concerns. On the other side, predictive maintenance techniques can monitor equipment as it operates, anticipating deterioration and incoming breakages, enabling just-in-time services at reduced operational costs. This paper presents a deploy and forget predictive maintenance sensor node designed explicitly for industrial electric motors. It is targeted for AC mono and three-phase asynchronous motors and generators, measuring vibrations, environmental noise, temperature, and the external magnetic field. The proposed sensor achieves self-sustainability by exploiting a 4x4 cm thermal source for 72 s with a ∆T of 20 °C, and it features short-long wireless data transfer respectively over WiFi and the cellular NB-IoT network. We tested the prototype on different electric motors, form 4 kW to 110 kW, reporting here its capability to detect anomalies using a vibration spectral analysis.\",\"PeriodicalId\":129732,\"journal\":{\"name\":\"2022 IEEE Sensors Applications Symposium (SAS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Sensors Applications Symposium (SAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAS54819.2022.9881349\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Sensors Applications Symposium (SAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAS54819.2022.9881349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

意外的设备故障对工人和用户来说是昂贵的和潜在的危险。定期检查和维护预定的间隔旨在限制计划外的生产停机时间,昂贵的更换零件和安全问题。另一方面,预测性维护技术可以在设备运行时对其进行监控,预测设备的恶化和即将发生的损坏,从而在降低运营成本的同时实现及时的服务。提出了一种针对工业电机设计的可部署可遗忘预测性维护传感器节点。它的目标是交流单、三相异步电动机和发电机,测量振动、环境噪声、温度和外部磁场。该传感器利用4x4厘米的热源,在20°C的温度下持续72秒,实现了自我可持续发展,并分别通过WiFi和蜂窝NB-IoT网络实现了短长无线数据传输。我们在不同的电动机上测试了原型,从4千瓦到110千瓦,这里报告了它使用振动频谱分析检测异常的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Self-sustainable IoT Wireless Sensor Node for Predictive Maintenance on Electric Motors
Unexpected equipment failure is expensive and potentially hazardous for workers and users. Periodic inspections and maintenance at predefined intervals aim to limit unplanned production downtime, costly replacement of parts and safety concerns. On the other side, predictive maintenance techniques can monitor equipment as it operates, anticipating deterioration and incoming breakages, enabling just-in-time services at reduced operational costs. This paper presents a deploy and forget predictive maintenance sensor node designed explicitly for industrial electric motors. It is targeted for AC mono and three-phase asynchronous motors and generators, measuring vibrations, environmental noise, temperature, and the external magnetic field. The proposed sensor achieves self-sustainability by exploiting a 4x4 cm thermal source for 72 s with a ∆T of 20 °C, and it features short-long wireless data transfer respectively over WiFi and the cellular NB-IoT network. We tested the prototype on different electric motors, form 4 kW to 110 kW, reporting here its capability to detect anomalies using a vibration spectral analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sensor Data Communication via Light Guide Body for Monitoring Vehicle Batteries Automatic Extraction of Muscle Fascicle Pennation Angle from Raw Ultrasound Data Printed wireless battery-free sensor tag for structural health monitoring of natural fiber composites Improvement of Door Recognition Algorithm using Lidar and RGB-D camera for Mobile Manipulator Development of a neural network to identify plastics using Fluorescence Lifetime Imaging Microscopy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1