基于数据的最接近原型矢量量化器鉴别能力差异评价

M. Kaden, D. Nebel, F. Melchert, Andreas Backhaus, U. Seiffert, T. Villmann
{"title":"基于数据的最接近原型矢量量化器鉴别能力差异评价","authors":"M. Kaden, D. Nebel, F. Melchert, Andreas Backhaus, U. Seiffert, T. Villmann","doi":"10.1109/WSOM.2017.8020030","DOIUrl":null,"url":null,"abstract":"In this paper we propose a rank measure for comparison of (dis-)similarities regarding their behavior to reflect data dependencies. It is based on evaluation of dissimilarity ranks, which reflects the topological structure of the data in dependence of the dissimilarity measure. The introduced rank measure can be used to select dissimilarity measures in advance before cluster or classification learning algorithms are applied. Thus time consuming learning of models with different dissimilarities can be avoided.","PeriodicalId":130086,"journal":{"name":"2017 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM)","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data dependent evaluation of dissimilarities in nearest prototype vector quantizers regarding their discriminating abilities\",\"authors\":\"M. Kaden, D. Nebel, F. Melchert, Andreas Backhaus, U. Seiffert, T. Villmann\",\"doi\":\"10.1109/WSOM.2017.8020030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a rank measure for comparison of (dis-)similarities regarding their behavior to reflect data dependencies. It is based on evaluation of dissimilarity ranks, which reflects the topological structure of the data in dependence of the dissimilarity measure. The introduced rank measure can be used to select dissimilarity measures in advance before cluster or classification learning algorithms are applied. Thus time consuming learning of models with different dissimilarities can be avoided.\",\"PeriodicalId\":130086,\"journal\":{\"name\":\"2017 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM)\",\"volume\":\"105 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSOM.2017.8020030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSOM.2017.8020030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种等级度量,用于比较(非)相似度,以反映数据依赖性。它是基于不相似等级的评价,它反映了数据的拓扑结构在不相似度量的依赖。所引入的秩测度可以在应用聚类或分类学习算法之前提前选择不相似测度。这样就可以避免对不同不相似度的模型进行耗时的学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data dependent evaluation of dissimilarities in nearest prototype vector quantizers regarding their discriminating abilities
In this paper we propose a rank measure for comparison of (dis-)similarities regarding their behavior to reflect data dependencies. It is based on evaluation of dissimilarity ranks, which reflects the topological structure of the data in dependence of the dissimilarity measure. The introduced rank measure can be used to select dissimilarity measures in advance before cluster or classification learning algorithms are applied. Thus time consuming learning of models with different dissimilarities can be avoided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Empirical evaluation of gradient methods for matrix learning vector quantization Fusion of deep learning architectures, multilayer feedforward networks and learning vector quantizers for deep classification learning Prototypes and matrix relevance learning in complex fourier space Imputation of reactive silica and available alumina in bauxites by self-organizing maps An evolutionary building algorithm for Deep Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1